ENGINE MAIN MECHANICAL UNIT

GROUP 01

CONTENTS

<table>
<thead>
<tr>
<th>4 cylinders</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>iniezione</th>
<th>1.8</th>
<th>turbo</th>
</tr>
</thead>
</table>

ENGINE REMOVAL AND INSTALLATION
- Foreword ... 01-3
- Engine mount location 01-3
- Engine removal Alfetta, Alfa 90, Alfa 75 and Giulietta vehicles 01-4
- Engine installation Alfetta, Alfa 90, Alfa 75 and Giulietta vehicles 01-7
- Engine removal Alfetta and Alfa 90 Motronic (017.13) vehicles 01-15
- Engine installation Alfetta and Alfa 90 Motronic (017.13) vehicles 01-16
- Engine removal GTV 2.0 vehicle 01-19
- Engine installation GTV 2.0 vehicle 01-20

ENGINE REMOVAL AND INSTALLATION (Alfa 75 turbo vehicle) 01-22/1
- Foreword ... 01-22/1
- Removal .. 01-22/2
- Installation 01-22/5

ENGINE DISASSEMBLY
- External components 01-23
- External components 01-24
- Internal components 01-25
- Motronic 2000 (017.13) engine 01-26
- Foreword ... 01-27
- Subassembly removal 01-27
- Cylinder head removal 01-28
- Engine block component removal 01-29
- Water pump removal 01-32
- Intake manifold/collector box disassembly 01-33
- Cylinder head disassembly 01-33

CHECKS AND INSPECTION
- Cylinder heads and valves 01-35
- Cylinder head sealing surface inspection ... 01-35
- Tappets and tappet housing bores 01-36
- Camshaft and camshaft journal housing bores 01-36
- Valve seat insert replacement 01-36
- Valve guides 01-37
- Valves and valve seats 01-38
- Valve springs 01-39
- Engine block 01-39
- Main and connecting rod bearings 01-39
- Main bearing caps 01-39
- Thrust rings 01-39
- Camshaft idler gear bushing 01-40
- Cylinder liner stand-out 01-40
- Crankshaft .. 01-40
- Cylinder liners 01-41
- Pistons and connecting rods 01-42
- Cylinder liner, piston and connecting rod matching 01-43
- Flywheel .. 01-44

ENGINE ASSEMBLY
- Cylinder head assembly 01-44
- Engine block assembly 01-46
- Crankshaft .. 01-46
- Cylinder liner, piston and connecting rod installation 01-48
- Timing drive idler gear installation 01-49
- Front cover assembly 01-49
- Front cover installation 01-50
- Cylinder head installation 01-51
- Oil pan installation 01-53
- Camshaft cover installation 01-53
- Intake manifold/collector box assembly 01-53
- Engine auxiliaries installation 01-53
- Rear cover rubber bushing replacement 01-55

LUBRICATION SYSTEM
- Description 01-55
- Oil pressure check 01-56
- Oil pump removal 01-56
- Oil pump disassembly and assembly 01-56
- Checks and inspection 01-56
- Oil pump installation 01-57
- Oil filter replacement 01-57

PA3469B0000003 March 1986
ENGINE MAIN MECHANICAL UNIT

CONTENTS (Contd)

4 cylinders

<table>
<thead>
<tr>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>2.0 iniezione</th>
<th>1.8 turbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFICATIONS AND GENERAL REQUIREMENTS</td>
<td>01-58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine specifications</td>
<td>01-58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checks and adjustments</td>
<td>01-60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General requirements</td>
<td>01-74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tightening torques</td>
<td>01-75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>01-76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURBOCHARGER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>01-76/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE TOOLS</td>
<td>01-77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 cylinders

<table>
<thead>
<tr>
<th>Alfa 90 2.5</th>
<th>iniezione</th>
</tr>
</thead>
</table>

6 cylinders

<table>
<thead>
<tr>
<th>Alfa 75 2.5</th>
<th>6V iniezione</th>
</tr>
</thead>
</table>

6 cylinders

<table>
<thead>
<tr>
<th>Alfa 90 2.0</th>
<th>6V iniezione</th>
</tr>
</thead>
</table>

6 cylinders

| GTV 6 2.5 | |
|-----------||

REMOVAL AND INSTALLATION OF ENGINES

(Alfa 90 and Alfa 75 L-Jetronic vehicles) .. 01-81
Foreword ... 01-81
Engine removal Alfa 90 and Alfa 75
L-Jetronic (016.46) vehicles 01-85
Engine installation Alfa 90 and Alfa 75
L-Jetronic (016.46) vehicles 01-87

REMOVAL AND INSTALLATION OF ENGINE

(Alfa 90 - 2.0 iniezione vehicles) 01-88/1
Foreword ... 01-88/1
Engine removal Alfa 90,
6 cyl. 2.0 iniezione (062.10) 01-88/2
Engine installation Alfa 90,
6 cyl. 2.0 iniezione (062.10) 01-88/5

REMOVAL AND INSTALLATION OF ENGINE

(GTV 6 - 2.5 vehicle) 01-88/7
General .. 01-88/7
Removal of engine 01-88/12
Installation of engine 01-88/14
ENGINE DISASSEMBLY 01-88/15
Preliminary operations 01-88/15
Removal of fuel system components
(L-Jetronic) 01-88/18
Removal of fuel system components
(CEM) ... 01-88/21
Removal of accessories 01-88/26
Removal of the cylinder heads 01-88/29
Removal of components from
engine block 01-88/32
Disassembly of the cylinder heads
on bench ... 01-88/38

CHECKS AND TESTING OF THE CYLINDER HEADS 01-88/45
Checks and testing of the
cylinder head and valves 01-88/45
Checking cylinder head flatness 01-88/45
Checking cylinder head bushings 01-88/45
Checking valve seats 01-88/49
Checking valve guides 01-88/50
Checking the valves 01-88/51
Checking valve springs 01-88/52
Checking tappets and
tappet seats 01-88/53
Checking rocker arms and
rocker arm shaft 01-88/53
Checking camshaft and
journal bearings 01-88/53

ASSEMBLY OF THE CYLINDER HEADS
(ON BENCH) 01-88/55
<table>
<thead>
<tr>
<th>CONTENTS (Cont'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 cylinders</td>
</tr>
<tr>
<td>Alfa 90 2.5 iniezione</td>
</tr>
<tr>
<td>6 cylinders</td>
</tr>
<tr>
<td>Alfa 75 2.5 6V iniezione</td>
</tr>
<tr>
<td>6 cylinders</td>
</tr>
<tr>
<td>Alfa 90 2.0 6V iniezione</td>
</tr>
<tr>
<td>6 cylinders</td>
</tr>
<tr>
<td>GTV 6 2.5</td>
</tr>
</tbody>
</table>

Installation of valves and rocker arm shaft	01-88/55
Installation of camshaft	01-88/57
Valve clearance adjustment	01-88/58
Installation of distributor and oil pump drive pulley	01-88/59
Installation of camshaft drive pulley	01-88/60
Installation of intake stub pipes (L-Jetronic)	01-88/60
Removal of cylinder head from the bench	01-88/60

CHECKING THE ENGINE BLOCK | 01-88/61 |
Checking the engine block | 01-88/61 |
Crankshaft | 01-88/61 |
Main and connecting rod half-bearings | 01-88/62 |
Main bearings and bearing caps | 01-88/63 |
Thrust rings | 01-88/63 |
Cylinder liners | 01-88/63 |
Disassembly of connecting rod-piston assembly | 01-88/64 |
Reassembly of connecting rod-piston assembly | 01-88/67 |
Replacing the flywheel ring gear | 01-88/68 |
Replacing oil sump cover | 01-88/69 |

ASSEMBLY OF ENGINE BLOCK | 01-88/71 |
Crankshaft | 01-88/71 |
Main bearing caps | 01-88/71 |
Oil seal rear | 01-88/73 |
Engine flywheel | 01-88/73 |
Cylinder liners, pistons and connecting rods | 01-88/74 |
Front cover | 01-88/76 |
Crankshaft front pulley | 01-88/76 |
Oil pump | 01-88/77 |
Reinstallation of cylinder heads | 01-88/80 |
Reinstallation of the accessories | 01-88/81 |
Installation of fuel system components | 01-88/91 |
Final operations | 01-88/91 |
Replacing the rear cover silenblocc | 01-88/92 |
Lubrication system | 01-88/93 |

SPECIFICATIONS AND GENERAL REQUIREMENTS | 01-89 |
Engine specifications | 01-89 |
Checks and adjustment | 01-90 |
General requirements | 01-102 |
Tightening torques | 01-104 |
TROUBLESHOOTING | 01-105 |
SERVICE TOOLS | 01-107 |
ENGINE REMOVAL
ALFETTA AND
ALFA 90 MOTRONIC
(017.13) VEHICLES

PRELIMINARY OPERATIONS
a. Place the vehicle over a garage lift and chock front wheels.

CAUTION:
When the engine is hot, proceed with caution to avoid burns.

b. Lift covers from covers from windshield wiper arm retaining nuts. Slacken nuts and remove wipers. Open hood and secure in open position with associated strut 1. Remove hinge bolts 2 and lay hood back in fully open position, protecting contact areas with suitable soft materials. If necessary, disconnect engine compartment light supply 3 and ground cables and windshield washer hose 4.

ALFETTA VEHICLE

ALFA 90 VEHICLE

1. Strut
2. Bolts
3. Engine compartment light supply (in-line connection)
4. Engine compartment light ground cable
5. Windshield washer hose

ENGINE COMPARTMENT
COMPONENT DISCONNECTION
For location of parts identified by reference numbers below, see the view of the engine compartment for the vehicle in question.

a. Disconnect positive and negative cables from battery 1. Disconnect the battery tie rods and lift out battery complete with tray.

b. Cooling circuit disconnection
 - Place a suitable container under the vehicle to collect drained coolant.
 - Disconnect lines as follows:
 • disconnect suction hose 2 from water pump;
 • disconnect delivery hose 3 from thermostat unit;
 • disconnect heater return line 4 from water pump;
 • disconnect expansion tank/radiator line 5 from radiator;
 • disconnect expansion tank/cooling circuit line 6 from pipe tee;
 • disconnect heater delivery 7;
 • disconnect vent line 8.

c. Radiator removal
 - Disconnect fan control cable 9 from temperature switch on radiator.
 - Disconnect fan supply cable 10 from in-line connection.
 - Remove screw 11 retaining radiator to body shell, retrieving spacer and the two cushion pads.
 - Remove radiator 12 together with fan 13.

d. Air intake circuit removal
 - Disconnect cable 14 from air flow sensor.
 - Slacken screws on clips 15 and remove corrugated intake duct 16.
 - Release clips 17, remove cover 18 together with air flow sensor, and take out the filter element.

 Alfa 90 - post-modification version
 Remove the air weighing extension 49 disconnecting it from the fitting on the body shell and from the air filter container.

e. Fuel supply circuit disconnection

CAUTION:
Fuel supply circuit is pressurized. Consequently, fuel tank should be drained before disconnecting delivery line. After disconnection, line ends should be held up.

Moreover, make sure that the workshop is provided with proper equipment, so as to work safely.

- Disconnect lines as follows:
 • disconnect fuel delivery line 19 and remove from fuel inlet manifold side;
 • disconnect fuel leak-back line 20 and remove from pressure regulator side.

f. Accelerator cable disconnection
 - Turn accelerator lever so as to relieve tension on cable and free detent at cable end.
 - Release lever and withdraw accelerator cable 21 with associated sheath from bracket.

g. Detach corrugated alternator cooling hose 22 from air intake and from seat on alternator. Remove hose.

h. Disconnect vacuum servo line 23 from intake manifold.

i. PVC circuit disconnection:
 - Disconnect crankcase vapour line 24 from valve cover.
 - Disconnect oil vapour recirculation line 25 from throttle body.
 - Disconnect separator return line 26 from dipstick base.

j. Disconnect the following electrical cables and remove, preferably as indicated:
 - HT cable 27 from ignition coil.
 - Alternator supply cable 28 and battery charge indicator cable 29 from terminal board 30 on L.H. side of vehicle (first remove cover).
 - Supply cable 31 and field cable 32 from starter.
 - Engine oil pressure indicator cable 33 from sending unit on engine block.
 - Valve timing vibrator cable 34 from varistor.
 - Control cables 35 from electrorjectors.
 - Coolant temperature sensor cable 36 from sensor on cylinder head.
 - Coolant temperature gauge cable 37 from sending unit on cylinder head.
— High coolant temperature indicator cable from sending unit on cylinder head.
— Throttle position sending unit cable from idle or WOT contact.
— Auxiliary air cable from auxiliary air valve.
— Ground cable from intake manifold and from auxiliary air valve.
— Rev. and timing transducer cables from associated connections.

NOTE:
Withdraw electroinjector cables together with all other cables contained in the same sheath.

— Engine oil level indicator cable from in-line connection adjacent to sensor on engine block (see alternator position).
— Low engine oil pressure indicator cable from sending unit on engine block (see distributor position).

Release cables from any clips and arrange so they will not interfere with engine removal.

k. Remove two screws retaining heat guard on L.H. engine mount.
l. Remove upper retaining screws from both side engine mounts.
m. Power steering circuit disconnection
 — Disconnect supply line from power steering unit.
 — Disconnect exhaust line from power steering unit.

ENGINE INSTALLATION
ALFETTA AND ALFA 90 MOTRONIC (017.13) VEHICLES

UNDERBODY COMPONENT INSTALLATION

Alfetta Motronic vehicles: follow procedure described in paragraph a. through j. for standard Alfetta and Giulietta vehicles. For location of parts, see view of underbody, Alfetta and Giulietta vehicles.

Alfa 90 Motronic vehicles: follow procedure described in paragraphs a. through k. for standard Alfa 90 vehicles. For location of parts, see view of underbody, Alfa 90 vehicles.

ENGINE COMPARTMENT CONNECTIONS

For location of parts identified by reference numbers below, see view of engine compartment for the vehicle in question.

a. Lower vehicle and secure top of heat guard through screws.
b. Secure top of engine mounts to crossmember through screws.
c. Connect power steering supply line and exhaust line. Restore all electrical connections; to do so, follow the procedure described in paragraph j., «Engine compartment component disconnection», in reverse order.
d. Connect PVC circuit lines following the procedure described in paragraph i., «Engine compartment component disconnection», in reverse order.
e. Connect accelerator cable following the procedure described in paragraph f., «Engine compartment component disconnection», in reverse order.
f. Connect alternator cooling hose and vacuum servo line to intake manifold.
g. Connect fuel and air intake circuits following the procedures described in paragraphs e. and d., «Engine compartment component disconnection», in reverse order.
h. Install radiator and fan following the procedure described in paragraph c., «Engine compartment component disconnection», in reverse order.
i. Connect cooling circuit lines following the procedure described in paragraph b., «Engine compartment component disconnection» in reverse order.
j. Position battery and associated tray in engine compartment. Secure battery with retainer and connect terminals.
k. Top up fluids and lubricants and carry out adjustments as described in the «Specifications» paragraph of each Group. For Alfa 90 vehicles, see also «GROUP 09».
l. Hold up hood and install hinge bolts on both sides of vehicle.
m. Install windshield wiper arms and blades.

May 1985
01-16
PA3469B0000001
VIEW OF ENGINE COMPARTMENT ALFETTA 2.0 MOTRONIC (017.13) VEHICLE

Engine compartment components to be removed or disconnected are listed below in numerical order. For further details, see «ENGINE REMOVAL AND INSTALLATION PROCEDURES».

1. Battery
2. Coolant suction hose (radiator/pump)
3. Coolant delivery hose (engine/radiator)
4. Heater return hose
5. Expansion tank/cooling circuit line
6. Expansion tank/cooling circuit line
7. Heater delivery line
8. Vent line
9. Fan control cable
10. Fan supply cable
11. Radiator retaining screw
12. Radiator
13. Fan
14. Air flow sensor cable
15. Clip
16. Intake duct
17. Clips
18. Cover with air flow sensor
19. Fuel delivery line
20. Fuel return line
21. Accelerator cable
22. Alternator cooling hose
23. Vacuum servo line
24. Crankcase vapour line to oil separator
25. Oil vapour recirculation line
26. Separator return line to oil pan
27. HT cable
28. Alternator supply cable
29. Battery charge indicator cable
30. Terminal board
31. Starter supply cable
32. Starter field cable
33. Engine oil pressure indicator cable
34. Valve timing indicator cable
35. Electromagnetic control cables
36. Coolant temperature sensor cable
37. Coolant temperature sensor cable
38. Coolant temperature indicator light cable
39. Throttle position sending unit cable
40. Auxiliary air cable
41. Ground cable
42. Rev. and timing transducer cables
43. Engine oil level indicator cable
44. Low engine oil pressure indicator cable
45. Heat guard upper retaining screws
46. Engine mount upper retaining screws
ENGINE MAIN MECHANICAL UNIT

ENGINE REMOVAL AND INSTALLATION

Alfa 75 1.8 turbo

FOREWORD
This section contains all the data and procedures relating to the removal and installation of the engine fitted on the following Alfa Romeo vehicle:

Alfa 75 1.8 turbo

Given that the operations involved in removing and installing the engine are somewhat numerous, the operator is urged to read the intervention procedures carefully and to examine with care the illustration of the assembly that give an indispensable but of course incomplete overall view of the engine.

Following the above advice permits the correct operational techniques to be acquired and familiarizes the technician with the technical data, and caution and warning captions.

Location of engine supports

1. Nut retaining side mount to body shell
2. Side mount rubber bushing
3. Screw retaining side mount to body shell
4. Screw retaining mount to engine block
5. R.H. side engine mount
6. Bolt retaining exhaust pipe bracket to silentbloc
7. Silentbloc for exhaust pipe support bracket
8. Exhaust pipe support bracket
9. Screw retaining bracket to flywheel cover
10. Rear mount
11. Nut retaining rear mount to the body shell
12. Spacer
13. Turbocharger bracket support
14. Turbocharger bracket
15. Bracket retaining screw
16. Turbocharger retaining screw
ENGINE MAIN MECHANICAL UNIT

REMOVAL

1. Preliminary operations
 a. Place vehicle on lift platform and chock wheels.

 CAUTION:
 When the engine is hot, proceed with caution to avoid burns.

b. Open hood and secure in open position with associated strut 1. Remove hinge bolts 2 and lay hood back in fully open position.

 CAUTION:
 Protect contact points with suitable soft materials.

2. Air supply system removal
 a. Disconnect from the supercharging pressure control solenoid valve 10 the following components (see detail B):
 — connector 11 for solenoid valve supply cable;
 — hose 12 to oil vapor sedimenter;
 — pressure line 13 from the turbocharger compressor;
 — hose 14 to overpressure valve (Waste-Gate).
 b. If necessary remove solenoid valve 10 from the air filter cover, unscrewing two nuts with washers 15.
 c. Disconnect union 16 from air flow meter 17.
 d. Unscrew upper screw 18 retaining air intake duct bracket to air flow meter.
 e. Slacken the two clamps 19 retaining air intake duct to air flow meter.
 f. Release clips 20 securing air filter cover 21 and remove it together with air flow meter 17, withdrawing it from the air intake duct.
 g. Remove filtering element and, if necessary, unscrew the two nuts and the screw securing the air filter casing to the body and remove it.
 h. Slacken clamp 22 securing air intake duct 23 to turbocharger compressor inlet (see detail C).
 i. Slacken clamp 22 securing oil vapour exhaust hose to the oil vapour sedimenter and remove air intake duct 23, withdrawing it from the turbocharger compressor inlet.

 WARNING:
 Plug the turbocharger compressor inlet so as to prevent any foreign matter from entering.

3. Coolant lines and radiator
 a. Disconnect the following pipes and hoses, removing them preferably from the end indicated:
 — slacken clamp 22 and remove coolant return sleeve 25 from the thermostat;
 — slacken the clamp and remove coolant delivery sleeve 27 from the water pump (see detail D);

 NOTE:
 Place a suitable container under the vehicle to collect drained coolant.

 — slacken the clamp and remove heater coolant return hose 28 from the water pump (see detail D);
 — slacken the clamp and remove radiator delivery line 29 from tee (see detail D);
 — slacken the clamp and remove breather line 30 from the radiator (see detail D);
 — slacken the clamp and remove cooling system breather line 31 from union on cylinder head (see detail E);
 — slacken the clamp and remove heater coolant delivery line 32 from union on cylinder head (see detail E);
 b. Disconnect fan control cable 33 from the temperature switch on the lower right part of the radiator (see detail F).
 c. Disconnect fan supply cable 34 from in-line connection (see detail F).
 d. Remove screw 35 retaining radiator 36 to front of body steel and remove it together with the fan.

March 1986

01-22/2

PA3469B0000003
4. Removal of fuel system

WARNING:
- Proceed with caution: the supply system may be under pressure.
- Keep tubing pointing upwards to prevent fuel escaping.

Ensure also that the workshop is correctly equipped to enable operations to be performed safely.

a. Disconnect fuel return hose from lower part of pressure regulator (37).
b. Slacken the nut and disconnect fuel delivery line (38) from the lower part of hampering damper (39) (see detail G).

CAUTION:
There may be residual pressure between fuel pump and hampering damper which could cause petrol to spray out; plug disconnected hose (38).

5. Accelerator cable disconnection

a. Slacken the three retaining screws and remove accelerator control protection plate (40).
b. Rotate fully, anticlockwise, accelerator control cam (41) and withdraw the pawl of control cable (42) from the end of the cam (see detail H).
c. Withdraw accelerator control cable (42) from support bracket (43), withdrawing it from the bottom (see detail H).

6. Oil cooling system removal

a. Unscrew union (44) and disconnect oil delivery hose (45) to cooling radiator (see detail I).
b. Unscrew union (46) and disconnect oil return hose (47) from cooling radiator (see detail I).

NOTE:
Place a suitable container under the vehicle to collect any oil leakage.

7. Electrical cable disconnection

a. Disconnect the following electrical cables and remove as indicated:
 - supercharging pressure sender cable (5) from manifold on intercooler;
 - HT cable (48) from ignition coil;
 - throttle position sending unit cable (49) from mobile connection (see detail H);
 - minimum cut-out switch (50) cables from relative switch (see detail H);
 - supply cables (51) and ground cables (52) from auxiliary air solenoid (see detail E);
 - air intake manifold ground cables (52A) from the right side of cylinder head (see detail E);
 - maximum coolant temperature cable (53) from thermal switch on the cylinder block (see detail E);
 - Hall effect cable (54) from distributor (see detail D);
 - alternator supply (64) and warning light (57) cables from terminal board (58) on engine compartment left valance panel (see detail L);
 - engine oil pressure indicator cable (62) from bulb on right side of engine block (see detail M);
 - engine oil minimum pressure indicator light cable (60) from transmitter on oil filter support (see detail N), or from mobile connection (51) near alternator (see detail C);
 - engine oil minimum pressure indicator light cable (65) from transmitter on R.H. side of engine block, under the distributor (see detail D);
 - coolant temperature indicator cable (62), from bulb on cylinder head, under intake manifold (see detail O);
 - coolant temperature sensor cable (63) from transmitter on cylinder head, under intake manifold (see detail O);
 - pulse sensor cable (64) from relative connector on cylinder head, under intake manifold (see detail M);
 - electro-injector feed cables (65) from respective connectors (see detail O);
 - feed (66) and energizing cables (67) from starting motor on R.H. side of rear cover (see detail O).

8. Final operations

a. Remove the three screws (68) securing heat guard (69) to brake/clutch system pump and remove heat guard.
b. Slacken and remove bolt (70) securing collar (71); this collar joins turbocharger exhaust gas union to the exhaust pipe (see detail P).
c. Slacken (but do not remove), on both sides, screws (72) fixing the upper part of the engine side mounts to the body steel (see detail P).
d. Remove heat guard (73) from L.H. side mount (see detail P).

For the following steps see the figure «View of underbody».

9. Oil discharge

(If required by the operations to be performed)

a. Raise the vehicle on the garage lift.
b. Unscrew plug (1) and drain engine oil.

Screw plug on again after the job has been completed.

10. Exhaust pipe removal

a. Slacken nut (2) securing clamp (3) connecting exhaust pipe front and centre sections (see detail A).
b. Separate front section (4) from centre section and from turbocharger exhaust gas union.
c. Remove the three screws (5) securing bracket (6) to end of flywheel cover (see detail A).
d. Slacken nut (7) securing clamp (8)
connecting centre section 9 of exhaust pipe and tail pipe 10 (see detail B).

e. Free centre section 9 from rubber support rings 11, and withdraw from tail pipe to remove.

g. Remove the six screws 28 securing rear cross member 29 to body shell and remove it.
h. Raise the rear axle using a column lift provided with cradle A.2.0075 and then extract propeller shaft from the clutch yoke.
i. Lower the column lift and remove the propeller shaft.

12. Final operations

a. Remove the screw from the body steel and disconnect the ground cable 30.
b. Fit a suitable operating lever on the end plate rear support to aid engine removal operations.
c. Slacken and remove lower nuts 31 retaining side engine mounts 32 (see detail F).
d. Lower garage lift and then unscrew and remove upper screws 33 retaining side mounts 32 (see detail F).
Raise the garage lift.
e. Hook a suitable hydraulic lift to engine lift bracket.
Activate lift and raise engine while tilting with a suitable lever.

NOTE:
If necessary, disconnect center spark plug cables and remove spark plug.
INSTALLATION

For the following operations refer to bottom view of vehicle in question.

1. Preliminary operations
 a. Install service handle on rear engine mount.
 b. Fasten engine to lifting bracket and, using a suitable hoist, lower powerplant slowly in engine compartment guiding it with the service handle.
 c. Centralize engine in engine compartment over the two side mounts and ensure that holes for screws and studs are correctly aligned on both mounts.
 d. Start and tighten screws retaining cushion mounts to body on both sides.
 e. Raise vehicle, start and tighten nuts retaining mounts to body at bottom on both sides.
 f. Remove service handle from rear engine mount.
 g. Connect ground cable to body steel and tighten the relative screws.

2. Install the propeller shaft group
 a. Install the propeller shaft group by following the removal procedures in reverse order (Removal step 11) and noting the points below:
 - Lubricate shaft front bushing and rear joint spherical seat using 5 cm³ (0.2 fl-oz) of ISSEO MOLYKOTE BR2 grease.
 If necessary lubricate the flywheel bushings with the same grease.
 - Restraining means and tighten nuts of flex couplings each in turn to the specified torque.

 : Tightening torque
 Nuts and bolts retaining shaft flex couplings to flywheel and clutch fork
 55 to 57 N·m
 (5.6 to 5.8 kg·m)
 40.8 to 42.0 ft·lb

 CAUTION:
 When assembling use new self-locking nuts.

 - Tighten nuts retaining center bearing to underbody.

 b. Fix pin or engine rear support using the two screws.
 c. Assemble flywheel guard and tighten bolts.
 d. Re-connect rod to the gearlever with bolt and slide on boot.

 : Tightening torque
 Nut retaining gear control rod to rear lever
 13 to 16 N·m
 (1.3 to 1.6 kg·m)
 9.4 to 11.8 ft·lb

 e. Secure crossmember to body shell using screws.
 f. Tighten transmission unit crossmember to body capscrews to the specified torque.

 : Tightening torque
 Transmission unit crossmember to body capscrews
 39 to 44 N·m
 (4.0 to 4.5 kg·m)
 28.8 to 32.5 ft·lb

 g. Check the specified distance between the propeller shaft and rear engine support.

3. Exhaust pipe installation
 a. Place centre section of the exhaust pipe on rubber support rings.
 b. Connect centre section of the exhaust pipe to tail pipe without tightening the nut on clamp.
 c. Connect centre section of the exhaust pipe to the front section without tightening the nut on clamp.

Distance between the propeller shaft and rear engine support

\[A = 7 \text{ mm} (0.28 \text{ in}) \]
d. Tighten screws (5) securing bracket (6) to the end of the flywheel cover.

6. Fuel supply system
Assemble the fuel supply system by following the procedures described in «Removal» step 4. in reverse order.

7. Accelerator cable
Connect accelerator cable adopting a reversal of the «Removal» sequence, step 5.

8. Oil cooling system
Restore the oil cooling circuit by following the procedures described in «Removal» step 6. in reverse order.

9. Electrical connections
Restore electrical connection, reversing the order of the procedure described in «Removal» step 7.

b. Tighten bolt (70) securing collar (71) joining turbocharger exhaust gas union to the front section of the exhaust pipe.

c. Re-connect servobrake vacuum intake hose (5) to the union on intercooler.

d. Re-connect hose (6) from turbocharger pressure gauge to the union on the intercooler.

e. Assemble air intake duct (3) complete with sleeve (8) to intercooler (9) and fix it to the front body shell panel using the four screws (7).

f. Place battery (1) in engine compartment and secure with bracket (4), secure bracket and air intake duct support using screws (2) and then re-connect battery terminals.

g. For references and adjustments see specifications of appropriate groups.
h. Release hood, prop up and install hinge bolts on both sides of vehicle.
1. Battery
2. Air intake and battery bracket retaining screws
3. Intercooler air intake
4. Battery retaining bracket
5. Servo brake vacuum intake hose
6. Supercharging pressure sender cable
7. Intercooler air intake retaining screws
8. Sleeve
9. Intercooler
10. Supercharging pressure control solenoid valve (Pierburg)
11. «Pierburg» solenoid valve supply cable
12. Hose connecting oil sediment
13. Pressure intake hose (from compressor)
14. Hose connecting overpressure valve
15. Nuts and washers retaining «Pierburg» valve
16. Air flow meter cable
17. Air flow meter
18. Air intake upper retaining screw
19. Air intake retaining clamps
20. Air filter cover retaining clips
21. Air filter cover
22. Clamp securing air intake duct to compressor
23. Air intake duct
24. Oil vapour exhaust hose
25. Sleeve clamp
26. Coolant return sleeve
27. Coolant delivery sleeve
28. Coolant return hose (from heater)
29. Radiator coolant supply hose
30. Radiator breather hose
31. Cooling system breather hose
32. Coolant delivery hose (to heater)
33. Fan control cable
34. Fan supply cable
35. Radiator retaining screw
36. Radiator
37. Pressure regulator
38. Fuel delivery hose
39. Hammering damper
40. Accelerator control guard
41. Accelerator control cam (throttle control)
42. Accelerator control cable
43. Accelerator control cable support bracket
44. Union
45. Oil delivery hose (to radiator)
46. Union
47. Oil return hose (from radiator)
48. Ignition coil cable
49. Throttle position sending unit cable
50. Minimum cut-out switch
51. Auxiliary air solenoid valve supply cable
52. Auxiliary air solenoid valve ground cables
52A Air intake manifold ground cables
53. Coolant maximum temperature indicator light cable
54. Hall effect sensor cable
55. Engine oil level indicator light cable
56. Alternator supply cable
57. Alternator indicator light cable
58. Terminal board
59. Engine oil pressure indicator cable
60. Low engine oil pressure indicator light cable
61. Connector for low engine oil pressure cable
62. Coolant temperature indicator cable
63. Coolant temperature sensor cable
64. Knock sensor cable
65. Electro-injector supply cables
66. Starting motor supply cables
67. Starting motor electromagnet energizing cable
68. Heat guard retaining screws
69. Heat guard
70. Collar retaining bolt
71. Collar
72. Engine mount upper retaining screws
73. Heat guard (on LH mount)
ENGINE MAIN MECHANICAL UNIT

g. Remove the following parts from camshafts (5):
 - Bolt (1)
 - Nut (2) lockwasher (3) and washer (4) on drive gear.
 - Gear (5), flange (7) and woodruff key (6).

CHECKS AND INSPECTION

CYLINDER HEADS AND VALVES

CYLINDER HEAD SEALING SURFACE INSPECTION
a. Thoroughly clean head surfaces using butyl acetate or methyl ethyl ketone to remove any gasket fragments.
b. Visually inspect head for cracks or other defects.
c. Check head sealing surface for warpage using a straightedge and feeler gauge positioned as shown.

d. In the event of excessive warpage, head must be refaced. Before refacing, remove the four exhaust manifold studs (1).

Maximum flatness error of cylinder head sealing surface: 0.05 mm (0.002 in)

Minimum cylinder head height after refacing: 111.5 mm (4.390 in)

Do not machine head below the minimum allowable thickness, otherwise severe engine damage might result.

1. Studs
ENGINE MAIN MECHANICAL UNIT

e. Check finish of machined surface.

Maximum allowable surface roughness:
1.6 μm (63 microinch)

Head top and bottom faces
must be parallel to within:
0.087 mm (0.0034 in)

TAPPETS AND TAPPET HOUSING BORES

a. Check tappet housing bores using a bore gauge 1 and a dial indicator 2. Compare readings with dimensions and tolerances given in Inspection Specifications Tables.
b. Check tappet skirt and head for signs of scuffing, score marks or excessive wear. Check diameter of tappet 3 using an outside micrometer, referring to Inspection Specifications Tables for dimensions and tolerances.

c. Check cam lobes and camshaft journals for score marks, scuffing, signs of overheating or excessive wear.
d. Measure camshaft journal diameter using an outside micrometer. Check for out-of-round condition using a dial gauge.

CAMSHAFTS AND CAMSHAFT JOURNAL HOUSING BORES

a. Install caps 1, lubricate nuts, and tighten to the specified torque.
b. Using a bore gauge 2 with dial indicator 3, measure camshaft journal housing bore diameter.

c. Prior to installing new seat inserts, check insert and housing bore dimensions against specifications shown in table.

Camshaft journal diameter:
26.959 to 26.980 mm
(1.0614 to 1.0622 in)
e. Check height of cam lobes using a dial indicator. Scrap and replace camshaft if height falls below requirements.

Tightening torque
Camshaft cap nuts
20 to 22 Nm
(2 to 2.25 kglm
14.7 to 16.2 ft.lb)

Camshaft Journal housing
bore diameter:
27.000 to 27.033 mm
(1.0630 to 1.0643 in)

VALVE SEAT INSERT REPLACEMENT

a. Check seat inserts for nicks, cracks or burn marks, and ensure that they are firm in housing bores. Replace if necessary.
b. To remove seat inserts, use a suitable tool as shown below.

c. March 1986

01-36
PA3469B0000003
ENGINE MAIN MECHANICAL UNIT

Valve Housing Bore O.D. [B = mm (in)]

<table>
<thead>
<tr>
<th>Valve</th>
<th>Engine 016.00 - 016.78 061.00 - 062.02 - 061.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>42.532 to 42.587 (1.6745 to 1.6785)</td>
</tr>
<tr>
<td></td>
<td>a. 36.532 to 36.587 (1.4370 to 1.4380)</td>
</tr>
<tr>
<td>Oversize</td>
<td>42.832 to 42.887 (1.6863 to 1.6893)</td>
</tr>
<tr>
<td></td>
<td>a. 36.832 to 36.887 (1.4468 to 1.4496)</td>
</tr>
</tbody>
</table>

Valve Housing Bore O.D. [B = mm (in)]

<table>
<thead>
<tr>
<th>Valve</th>
<th>Engine 016.55 - 017.13 062.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>45.000 to 45.025 (1.7717 to 1.7726)</td>
</tr>
<tr>
<td></td>
<td>a. 41.000 to 41.005 (1.6142 to 1.6152)</td>
</tr>
<tr>
<td>Oversize</td>
<td>45.300 to 45.325 (1.7835 to 1.7844)</td>
</tr>
<tr>
<td></td>
<td>a. 41.300 to 41.325 (1.6260 to 1.6270)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve</th>
<th>Engine 016.00 - 016.78 061.00 - 062.02 - 061.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>42.597 to 42.632 (1.6770 to 1.6784)</td>
</tr>
<tr>
<td></td>
<td>a. 36.597 to 36.632 (1.4396 to 1.4409)</td>
</tr>
<tr>
<td>Oversize</td>
<td>42.897 to 42.932 (1.6889 to 1.6902)</td>
</tr>
<tr>
<td></td>
<td>a. 36.897 to 36.932 (1.4514 to 1.4528)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve</th>
<th>Engine 016.55 - 017.13 062.12 - 061.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>45.065 to 45.100 (1.7742 to 1.7758)</td>
</tr>
<tr>
<td></td>
<td>a. 41.065 to 41.100 (1.6187 to 1.6191)</td>
</tr>
<tr>
<td></td>
<td>a. 38.642 to 38.656 (1.5213 to 1.5220(1)</td>
</tr>
<tr>
<td>Oversize</td>
<td>45.365 to 45.400 (1.7890 to 1.7904)</td>
</tr>
<tr>
<td></td>
<td>a. 41.365 to 41.400 (1.6286 to 1.6300)</td>
</tr>
<tr>
<td></td>
<td>a. 38.492 to 38.500 (1.5154 to 1.5160)</td>
</tr>
</tbody>
</table>

1. Bore gauge

c. Calculate clearance by subtracting maximum stem diameter from guide I.D.

Valve stem/guide clearance:

- Intake: 0.013 to 0.043 mm (0.0005 to 0.0017 in)
- Exhaust: 0.040 to 0.080 mm (0.0016 to 0.0031 in)

Exhaust: 0.040 to 0.075 mm (1)
- (0.0016 to 0.0030 in) (1)
- Exhaust: 0.040 to 0.070 mm (2)
- (0.0015 to 0.0028 in) (2)

(1) For 061.34 engine only
(2) For Eaton-Livo valve, 061.34 engine

Valve guide replacement

a. Check valve guides for score marks, scuffing, distortion or signs of movement in seats.
b. If replacement is necessary, remove worn guides using driver A.3.0134 as shown.

VALVE GUIDES

Check valve stem clearance in guide, if clearance exceeds tolerance scrap and replace worn parts.

Clearance measurement

- a. Using an outside micrometer, measure valve stem at three different points, each offset by 90 degrees.
- b. Measure guide I.D. using a bore gauge

Valve guide I.D.:

- 9.000 to 9.015 mm (0.3543 to 0.3549 in)

(1) For 061.34 engine only

1. Valve guides

March 1986

01-37
c. Check guide seat diameter and O.D. of new guides; interference fit must be within specified tolerances.

Valve guide seat diameter:
13.990 to 14.018 mm
(0.5508 to 0.5519 in)

Valve guide O.D.:
14.033 to 14.044 mm
(0.5525 to 0.5529 in)
(intake and exhaust)
14.048 to 14.059 mm
(0.5531 to 0.5535 in)
(exhaust) (1)

Valve guide/seat interference fit:
0.015 to 0.054 mm
(0.0006 to 0.0021 in)
(intake and exhaust)
0.030 to 0.069 mm
(0.0012 to 0.0027 in)
(exhaust) (1)

(1) For 061.34 engine only

d. Install new guides using tool A.3.0246 for intake valve guides and a suitable tool for exhaust valve guides. These tools ensure that the correct guide stand-out from the bottom spring cup abutment surface on cylinder head is maintained.

A.3.0246

Valve guide stand-out mm (in)

<table>
<thead>
<tr>
<th>Valve</th>
<th>Engine</th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td>016.00 - 016.78 - 016.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>062.02 - 062.12 - 061.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>13.300 to 13.500 (0.5236 to 0.5315)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>16.300 to 16.500 (0.6417 to 0.6496)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve</th>
<th>Engine</th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td>017.13 - 061.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>11.900 to 12.000 (0.4646 to 0.4724)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>16.300 to 16.500 (0.6417 to 0.6496)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e. Ream valve guides to the specified diameter.
Check I.D. after reaming.

Valve guide fitted I.D. after reaming:
9.000 to 9.015 mm
(0.3543 to 0.3549 in)

VALENS AND VALVE SEATS
Check valves for nicks, burns or excessive deposits due to poor sealing between valve face and seat. If necessary, scrap and replace valves.

a. If valves are in good condition, check dimensions against specifications.

b. Grind valve seats using suitable equipment as shown below.

Valve stem diameter:
Intake: 8.972 to 8.987 mm
(0.3532 to 0.3538 in)

Exhaust: 8.935 to 8.960 mm
(0.3518 to 0.3528 in)

Exhaust: 8.940 to 8.960 mm
(0.3520 to 0.3528 in) (1)

Exhaust: 8.945 to 8.960 mm
(0.3522 to 0.3528 in) (2)

(1) ATE valve stem diameter for 062.12 and 061.34 engine
(2) Eaton-Livisa valve stem diameter for 061.34 engine

Seat angle is the same for both intake and exhaust valve seats, and should be: 120°

c. To produce correct seat angle, position grinder at 30°.
d. After machining, grind each valve into the associated seat using a suitable tool.

March 1986

01-38

PA34699BOO000003
ENGINE MAIN MECHANICAL UNIT

VALVE SPRINGS
Inspect valve springs for cracks or lack of tension. If poor spring performance is suspected, check inner and outer spring compressed length against specifications using a suitable tester.

<table>
<thead>
<tr>
<th>Inspection load N (kg) (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 016.00 - 016.78 016.55</td>
</tr>
<tr>
<td>Outer 348.8 to 366.1 (78.4 to 82.3) (35.67 to 37.33) (85.3 to 88.9)</td>
</tr>
<tr>
<td>Inner 218.1 to 227.1 (49.1 to 51.1) (22.24 to 23.16) (22.24 to 23.16)</td>
</tr>
</tbody>
</table>

MAIN BEARING CAPS
a. Install main bearing caps 1 in engine block. Caps are numbered to ensure proper positioning.
b. Lubricate cap nuts and associated washers 2 in engine oil and tighten to the specified torque.

Tightening torque
Main bearing cap nuts
46 to 49 Nm
(4.7 to 5 kgm
33.9 to 36.1 ft.lbf)

ENGINE BLOCK
a. Inspect engine block for cracks or excessive wear in cylinder bores.
b. Thoroughly clean engine block faces with butyl acetate or methylethylketone to remove any gasket fragments.

MAIN AND CONNECTING ROD BEARINGS
a. Clean main and connecting rod bearings and check for scoring or scuffing.
b. In the event of excessive wear, scrap and replace all bearings.
c. Connecting rod and main bearing assembly to crankshaft must be carried out matching parts of the same grade, identified by paint marks of the same colour (RED or BLUE) applied on the side of each bearing and the associated crankshaft journal or crankpin.
d. Measure wall thickness of bearing halves using an outside micrometer and compare results with specifications. Replace any excessively worn bearings.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Main 1.829 to 1.835 mm (0.0720 to 0.0722 in)</td>
</tr>
<tr>
<td>Conn. rod</td>
<td>1.829 to 1.835 mm (0.0720 to 0.0722 in)</td>
</tr>
<tr>
<td>Blue</td>
<td>Main 1.835 to 1.841 mm (0.0722 to 0.0725 in)</td>
</tr>
<tr>
<td>Conn. rod</td>
<td>1.835 to 1.841 mm (0.0722 to 0.0725 in)</td>
</tr>
</tbody>
</table>

Main bearing diameter:
63.647 to 63.666 mm
(2.5058 to 2.5065 in)

For
061.00 - 061.34 - 062.02 - 062.12 engines:
63.652 to 63.671 mm
(2.5060 to 2.5067 in)

1. Main bearing caps
2. Nuts and washers
3. Using a bore gauge 1 with dial indicator 2, measure installed diameter of main bearings and compare with specifications.

For
061.00 - 061.34 - 062.02 - 062.12 engines:
63.652 to 63.671 mm
(2.5060 to 2.5067 in)

1. Bore gauge
2. Dial indicator

March 1986
d. Check centre main bearing housing width.

Centre main bearing housing width: 25.15 to 25.20 mm (0.990 to 0.992 in)

THRUST RINGS
a. Measure thrust ring thickness and compare with specifications.

Thrust ring thickness:
2.310 to 2.360 mm (0.091 to 0.093 in)

For 061.34 engine:
2.311 to 2.362 mm (0.0910 to 0.0930 in)

CAMSHAFT IDLER GEAR BUSHING
a. Using plug gauge C.8.0103, check the camshaft idler gear bushing for wear.

b. If replacement is necessary, remove bushing using puller A.3.0210. Also scrap and replace bushing on front cover at this time.

CYLINDER LINER STAND-OUT
a. Thoroughly clean liners and insert in block.
b. Apply dial indicators to gauge C.6.0148. Place gauge on a surface plate and zero the dial indicators.

c. Place gauge on cylinder block so that dial indicator styluses rest on edges of liner. Read liner stand-out off dial indicator.
d. Compare stand-out reading with specifications.

CRANKSHAFT
a. Examine crankshaft main journals and crankpins for uneven wear, scoring, scuffing or overheating.

NOTE:
Crankshaft has been carbonitrided, and thus cannot be reconditioned. Consequently, if measurements reveal excessive wear, crankshaft must be scrapped and replaced.

b. Measure crankshaft main journal and crankpin diameters and compare with data given in Inspection Specifications under Crankshaft.
Crankshaft main journals and crankpins are graded according to machining tolerances. Grades are identified by RED or BLUE paint marks.

Maximum crankpin misalignment relative to main journals:
0.015 mm (0.0006 in)

Maximum crankpin centerline misalignment relative to main journal centerline:
0.3 mm (0.012 in)

1. Crankshaft
2. Main journal
3. Crankpin

Maximum permissible main journal and crankpin ovality:
A-B = 0.007 mm (0.0003 in)

d. Measure main journal and crankpin diameter at several points to check for ovality.

Maximum permissible main journal and crankpin taper:
A-B = 0.01 mm (0.0004 in)

e. Support crankshaft on V-blocks or a lathe. Place dial indicator stylus in contact with main journals and crankpins and compare dimensions with the following specifications:

Maximum main journal eccentricity:
0.04 mm (0.0016 in)

f. Check width of center main journal, which should be 30.000 to 30.035 mm (1.1811 to 1.1825 in).

g. If the foregoing inspection shows crankshaft to be in good condition, clean oil passages as follows:
— Drill out the aluminum plugs blocking the oil passages.

1. Cylinder liners

Maximum liner taper:
A-B = 0.01 mm (0.0004 in)

Maximum liner out-of-round:
X-Y = 0.01 mm (0.0004 in)

— Compare results of measurements with nominal dimensions for each liner grade and determine maximum wear.

1. Crankshaft
2. Oil passages

— Clean oil passage using a wire brush.
— Clean the crankshaft and oil passages with hot fuel oil and dry with compressed air.
— Block passages with new aluminum plugs.
Stake plugs in place using a suitable tool.

(1) 26 mm (1 in) for 062.12 engines
PISTONS AND CONNECTING RODS
a. Remove compression rings and oil control ring together with expander spring as shown.

Compare results of measurement with tolerances given on Piston Specifications Table.
f. Check pin bores in piston and connecting rod for excessive wear.
g. Measure pin diameter with an outside micrometer.
Measure piston bore diameter using a bore gauge.
Compare measurements with specifications for the grade concerned.

b. Using a screw driver, remove piston pin retaining ring.
c. Withdraw piston pin and separate connecting rod from piston.
d. Thoroughly inspect pistons for score marks on skirt or damaged ring grooves. Damaged or scored pistons must be scrapped and replaced.
Like the cylinder liners, pistons are graded according to machining tolerances.
Grades are identified by paint marks on the piston head.
Colour for each grade is as follows:
BLUE = A PINK = B GREEN = C
e. Using an outside micrometer, measure the diameter of the piston skirt at right angles to the piston pin bore and at the following distance from the bottom edge of the skirt:

Piston pin bore diameter:
Black 22.000 to 22.002 mm (0.86614 to 0.86622 in)
22.001 to 22.003 mm (1)
(8.8662 to 0.8663 in) (1)
White 22.003 to 22.005 mm
(0.86626 to 0.86634 in)
(1) For 061.34 engine only

Pin diameter:
Black 21.994 to 21.997 mm
(0.8659 to 0.8660 in)
White 21.997 to 22.000 mm
(0.8660 to 0.8661 in)
h. Measure thickness of compression and oil control rings. Install rings in a suitable checking fixture or in cylinder liner and check ring gap «A» with a feeler gauge.

i. Match piston pins with pistons of the same grade.
Grade is identified by WHITE or BLACK paint marks on the inside of the pin and on the pin boss in the piston.
j. Pistons and pins may be reused if contact surfaces, particularly those in the piston bosses, are completely free from scratches or scoring of any kind.
k. Install pins in pistons of the same grade and fit retaining rings. Using a balance scale similar to that shown, check that the weight difference between pistons does not exceed 4 grams.

016.00 - 061.00 engines:
Borgo piston: 17 mm (0.67 in)
Mondial piston: 20 mm (0.79 in)

016.78 - 061.34 - 062.02 engines:
15 mm (0.59 in)

016.55 - 062.12 - 017.13 engines:
17 mm (0.67 in)

i. Examine connecting rods for cracks, scoring or signs of excessive wear. If connecting rods and caps are undamaged, carry out the measurements described below to determine whether they may be reused.
m. Measure fitted diameter of small end bushing using a bore gauge and dial indicator.
ENGINE MAIN MECHANICAL UNIT

Small end bushing fitted diameter:
22.005 to 22.015 mm
(0.8663 to 0.8667 in)

p. Check alignment of connecting rods using a fixture as shown.

n. Install connecting rod caps, lubricate nuts and washers in oil and tighten to the specified torque. Measure big end bore as described in paragraph m. above.

\[
\text{Tightening torque}
\]
Connecting rod cap nuts (wet)
49 to 52 Nm
(5 to 5.3 kgm
36.1 to 38.4 ft.lb)

Big end bore diameter:
53.695 to 57.708 mm
(2.1140 to 2.2145 in)

Using a balance scale similar to that shown, check that the weight difference between connecting rods complete with caps and fasteners does not exceed 2 grams.

head and on the outside of the cylinder liner as described in the foregoing paragraphs.

l. Liner/piston clearance:
016.00 - 061.00 - 062.02 - 016.78 engines:
0.030 to 0.049 mm
(0.0012 to 0.0019 in)

016.55 - 061.34 - 062.12 - 017.13 engines:
0.040 to 0.059 mm
(0.0016 to 0.0023 in)

b. Pistons and pins. Pistons and pins must be paired using parts of the same grade, identified by paint marks of the same color on the outside of the pin and on the piston boss.

Pin/piston bore clearance:
(black and white)
0.003 to 0.008 mm
(0.00012 to 0.00031 in)

061.34 engine:
0.004 to 0.009 mm (black)
(0.00016 to 0.00035 in) (black)
0.003 to 0.008 mm (white)
(0.00012 to 0.00031 in) (white)

c. Pistons and connecting rods. Connecting rods must be installed with the offset facing towards the intermediate main journals. For 1800 and 2000 engines, pistons must be positioned with the arrow stamped on the head toward the exhaust side.

CYLINDER LINER, PISTON AND CONNECTING ROD MATCHING

a. Cylinder liners and pistons. Cylinder liners and pistons must be paired using parts of the same grade, identified by paint marks of the same color on the piston

NOTE:
Misaligned connecting rods must be scrapped and replaced, as they impose excessive loads on bearings, pistons and cylinder walls, which leads to irregular piston and rod wear.

Pin/small end clearance:
Black 0.008 to 0.021 mm
(0.0003 to 0.0008 in)
White 0.005 to 0.018 mm
(0.0002 to 0.0007 in)

d. Insert small end of connecting rod between piston bosses and align bores for piston pin installation.
ENGINE MAIN MECHANICAL UNIT

FLYWHEEL
a. Check inside diameter of center bushing. If necessary, install a new bushing and ream to the specified size.

Flywheel center bushing I.D. (after reaming): 26.010 to 26.023 mm (1.0240 to 1.0245 in)
b. Check ring gear teeth for chipping or signs of pick-up. If damaged, remove ring gear using a hydraulic press and replace.
c. Thoroughly clean mating surfaces of flywheel and new ring gear.
d. Heat the new ring gear evenly to 120 to 140°C (248 to 284°F). Fit ring gear over flywheel and check that it is correctly seated.
e. Allow ring gear to cool slowly at room temperature. Do not attempt to accelerate cooling.

ENGINE ASSEMBLY

CYLINDER HEAD ASSEMBLY
After inspecting as described above and replacing defective parts, assemble engine using the special purpose tools described during engine disassembly and the assembly tools indicated below.
a. Clamp support A.2.0195 and fork A.2.0196 in vice and install cylinder head on fork.
b. Fit bottom spring cups 1 and abutment washers 2 over intake and exhaust valve guides.
c. Install oil seals on intake valve guides using tool A.3.0244.
d. Lubricate valve stems with clean engine oil and install in the associated guides. Retain valves using support tool A.2.0192. Support should be secured to spark plug hole through the associated wing nut.
e. Insert inner springs 1, outer springs 2 and top spring cup 3 over valve stems. Damping coils of springs must face downward.
f. Install support A.3.0103/0010 on head center studs and, using spring compressor A.3.0103/0006 and lever A.3.0324, compress springs and install spring retainer locks in grooves on valve stem.

Valve leakage test.
Install spark plugs in seats.
Pour enough fuel in a combustion chamber to barely cover the head of the valve under test.
Introduce air at low pressure into the intake and exhaust passages and check for air bubbles in the fuel.
If leakage is detected, check that valves are properly seated and repeat leakage test.
If leakage persists, regrind the valve seats as described under «Inspection - Valves and valve seats».

h. Install flanges and woodruff keys on camshafts.
Position gears with washers, lockwashers and nuts.
Tighten nuts.

i. Using clean engine oil, lubricate camshaft journals 1 and housings 2 on cylinder head.

j. Position caps 1 in numerical order (numbers are marked on caps).
Lubricate nuts and washers 2 with engine oil and tighten to specified torque.
Check camshaft journal running clearance and camshaft end float against specifications.

T: Tightening torque
Camshaft cap nuts (wet)
20 to 22 Nm
(2 to 2.25 kgm
14.8 to 16.2 ft.lb)

Camshaft journal running clearance:
0.020 to 0.074 mm (0.0008 to 0.0029 in)

Camshaft end float:
0.065 to 0.182 mm (0.0026 to 0.0072 in)

k. Using gauge C.6.0168, check clearance between cam heel radius and tappet head against specifications.
To adjust clearance, remove valve tip cap and install another of the correct thickness.
Use a suitable tool to check tip cap thickness.

Valve clearance:

Intake:	0.400 to 0.450 mm (0.0157 to 0.0177 in)
Exhaust:	0.450 to 0.500 mm (0.0177 to 0.0197 in)
Exhaust:	0.500 to 0.600 mm (1) (0.0197 to 0.0236 in) (1)

(1) For 061.34 engine only
ENGINE MAIN MECHANICAL UNIT

1. Grease chain tensioner spring and insert in tensioner. Insert spring retainer plate in slot on tensioner and install tensioner assembly in seat on cylinder head. Install screw as shown below, ensuring that it is aligned with hole on spring retainer plate.

ENGINE BLOCK ASSEMBLY

CRANKSHAFT

a. Install crankshaft in block as follows:
 — Install the main bearing halves in the block and lubricate with oil.
 Crankshaft must be matched with main bearings of same grade, identified by paint marks of the same colour (RED or BLUE) applied on the side of each bearing and associated crankshaft journal.

m. If a new cylinder head is used, restore timing marks on front camshaft caps using a suitable tool.

1. Top main bearing halves
2. Crankshaft

— Lubricate crankshaft journals and position crankshaft over main bearings.
— Insert thrust ring halves in seat on center main bearing.
 Rotate crankshaft to settle thrust rings. When installing thrust rings, make sure that oil grooves face crankshaft throws.

b. Main bearing cap installation.
 — Install bearing halves in caps and lubricate with oil.
 — Install center bearing cap together with bearing half and thrust ring halves. Parts should be positioned as indicated by numbers on bearing cap.

1. Main bearing caps
2. Nuts and washers

— Tighten the bearing cap nuts to the specified torque in two or three stages.

T: Tightening torque
Main bearing cap nuts (wet)
46 to 49 Nm
(4.7 to 5 kgm
33.9 to 36.1 ft.lb)

c. Crankshaft end play check.
— Apply a dial indicator with magnetic base on engine block so that indicator stylus a contacts crankshaft parallel to crankshaft centerline.

Angular position of timing mark on front bearing cap

<table>
<thead>
<tr>
<th>Engine</th>
<th>016.00</th>
<th>016.78</th>
<th>016.55</th>
<th>061.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>+ 1°</td>
<td>-0°15'</td>
<td>-1°20'30"</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>-4°</td>
<td>+0°15'</td>
<td>-7°</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine</th>
<th>017.13</th>
<th>062.02 - 061.00 - 062.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>+12°45'</td>
<td>-2°04'</td>
</tr>
<tr>
<td>Exhaust</td>
<td>-1°</td>
<td>-1°06'</td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

SPECIFICATIONS

ENGINE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>(061.34)</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Otto cycle, 4-stroke</td>
</tr>
<tr>
<td>No. and arrangement of cylinders</td>
<td>4 in-line</td>
</tr>
<tr>
<td>Cylinder numbering</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>Bore - Stroke</td>
<td>mm</td>
</tr>
<tr>
<td>(in)</td>
<td>(3.15 x 3.46)</td>
</tr>
<tr>
<td>Displacement</td>
<td>cm³</td>
</tr>
<tr>
<td>(cu.in)</td>
<td>(108.55)</td>
</tr>
<tr>
<td>Combustion chamber volume</td>
<td>cm³</td>
</tr>
<tr>
<td>(cu.in)</td>
<td>(4.17)</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>7.5</td>
</tr>
<tr>
<td>Power output DIN</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>kW (HP)</td>
</tr>
<tr>
<td></td>
<td>at 5800 rpm</td>
</tr>
<tr>
<td>Max. torque DIN</td>
<td>Nm (kgm)</td>
</tr>
<tr>
<td>(ft.lb)</td>
<td>(166)</td>
</tr>
<tr>
<td></td>
<td>at 2600 rpm</td>
</tr>
<tr>
<td>Mean effective piston speed (1)</td>
<td>m/sec</td>
</tr>
<tr>
<td></td>
<td>(ft/s)</td>
</tr>
<tr>
<td>Octane rating</td>
<td>N.O. - R.M.</td>
</tr>
<tr>
<td></td>
<td>Sensitivity (2)</td>
</tr>
<tr>
<td>Engine oil pressure (3)</td>
<td></td>
</tr>
<tr>
<td>Minimum at idle</td>
<td>kPa</td>
</tr>
<tr>
<td></td>
<td>(0.49; 0.5; 7.1)</td>
</tr>
<tr>
<td>Minimum at peak rpm</td>
<td>kPa</td>
</tr>
<tr>
<td>(bar; kg/cm²; psi)</td>
<td>(3.43; 3.5; 49.7)</td>
</tr>
<tr>
<td>Maximum at peak rpm</td>
<td>kPa</td>
</tr>
<tr>
<td></td>
<td>(4.41 to 4.90; 4.5 to 5.0; 63.9 to 71)</td>
</tr>
</tbody>
</table>

(1) At maximum output rpm
(2) Difference between Research Method and Motor Method Octane Rating
(3) Check with oil at operating temperature (90°C; 194°F)
ENGINE MAIN MECHANICAL UNIT

SPECIFICATIONS

ENGINE SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(061.00)</td>
</tr>
<tr>
<td>Type</td>
<td>Otto cycle, 4-stroke</td>
</tr>
<tr>
<td>No. and arrangement of cylinders</td>
<td>4, in-line</td>
</tr>
<tr>
<td>Cylinder numbering</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>Bore - Stroke</td>
<td>mm</td>
</tr>
<tr>
<td>Displacement</td>
<td>cm³</td>
</tr>
<tr>
<td>Combusation chamber volume</td>
<td>cm³</td>
</tr>
<tr>
<td>Compression ratio</td>
<td></td>
</tr>
<tr>
<td>Power output DIN</td>
<td>kW (HP)</td>
</tr>
<tr>
<td></td>
<td>Nm (kpm) (ft.lb)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean effective piston speed (1)</td>
<td>m/sec</td>
</tr>
<tr>
<td>Octane rating</td>
<td>N.O. - R.M. Sensitivity (2)</td>
</tr>
<tr>
<td>Engine oil pressure (3)</td>
<td>kPa (bar; kgf/cm²; psi)</td>
</tr>
</tbody>
</table>

(1) At maximum output rpm
(2) Difference between Research Method and Motor Method Octane Rating
(3) Check with oil at operating temperature (90°C; 194°F)
CHECKS AND ADJUSTMENTS

VALVE TIMING DATA (1)

REFERENCE MARKS ON FRONT CAMSHAFT BEARING CAP (viewed from flywheel side)

<table>
<thead>
<tr>
<th>Engine</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(016.00)</td>
<td>(016.78)</td>
<td>(016.55)</td>
</tr>
<tr>
<td>Camshafts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>105.20.03.200.00</td>
<td>105.46.03.200.01</td>
<td>116.85.03.200.01</td>
</tr>
<tr>
<td>Exhaust</td>
<td>105.20.03.200.00</td>
<td>105.46.03.200.01</td>
<td>105.20.03.200.00</td>
</tr>
<tr>
<td>Clearance between cam heel radius and tappet head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake (in)</td>
<td>0.400 to 0.450 (0.016 to 0.018)</td>
<td>0.400 to 0.450 (0.016 to 0.018)</td>
<td></td>
</tr>
<tr>
<td>Exhaust (in)</td>
<td>0.450 to 0.500 (0.018 to 0.020)</td>
<td>0.450 to 0.500 (0.018 to 0.020)</td>
<td></td>
</tr>
<tr>
<td>Angular position of timing mark on front bearing cap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake (°)</td>
<td>+1°</td>
<td>−0°15′</td>
<td>+12°45′</td>
</tr>
<tr>
<td>Exhaust (°)</td>
<td>−4°</td>
<td>+0°15′</td>
<td>−1°</td>
</tr>
<tr>
<td>Nominal lift</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake (in)</td>
<td>9 (0.35)</td>
<td>9.5 (0.37)</td>
<td>11 (0.43)</td>
</tr>
<tr>
<td>Exhaust (in)</td>
<td>9 (0.35)</td>
<td>9.5 (0.37)</td>
<td>9 (0.37)</td>
</tr>
</tbody>
</table>

(1) Engine cold

VALVE TIMING DATA (1)

REFERENCE MARKS ON FRONT CAMSHAFT BEARING CAP (viewed from flywheel side)

<table>
<thead>
<tr>
<th>Engine</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
<th>1800</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(061.00)</td>
<td>(062.02)</td>
<td>(062.12)</td>
<td>(061.34)</td>
</tr>
<tr>
<td>Camshafts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>116.55.03.200.08</td>
<td>116.99.03.200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>105.20.03.200.00</td>
<td>105.20.03.200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance between cam heel radius and tappet head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake (in)</td>
<td>0.400 to 0.450 (0.016 to 0.018)</td>
<td>0.400 to 0.450 (0.016 to 0.018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust (in)</td>
<td>0.450 to 0.500 (0.018 to 0.020)</td>
<td>0.550 to 0.600 (0.022 to 0.024)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angular position of timing mark on front bearing cap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake (°)</td>
<td>−2°04′</td>
<td>−1°20′30″</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust (°)</td>
<td>−1°06′</td>
<td>−7°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal lift</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake (in)</td>
<td>11 (0.43)</td>
<td>8 (0.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust (in)</td>
<td>9 (0.35)</td>
<td>9 (0.35)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Engine cold

PA346980000003

01-60

March 1996
VALVE TIMING DATA (1)

VALVE OPENING AND CLOSING ANGLE CHECK
(crankshaft rotation counterclockwise when viewed from flywheel side)

<table>
<thead>
<tr>
<th>Engine</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(016.00)</td>
<td>(016.78)</td>
<td>(016.55)</td>
<td>(017.13)</td>
</tr>
</tbody>
</table>

Intake
- **Opening**: Linear displacement of tappet (Sa) 0.25 (0.010) 21°30' to 24°30' 4° to 3°
- **Closing**: Linear displacement of tappet (Sa) 0.25 (0.010) 21°30' to 24°30' 4° to 3°

Exhaust
- **Opening**: Linear displacement of tappet (Sa) 0.20 (0.008) 40°30' to 43°30' 38°30' to 41°30'
- **Closing**: Linear displacement of tappet (Sa) 0.20 (0.008) 40°30' to 43°30' 38°30' to 41°30'

(1) Engine cold
(2) ATDC for 017.13 engines

VALVE TIMING DATA (1)

VALVE OPENING AND CLOSING ANGLE CHECK
(crankshaft rotation counterclockwise when viewed from flywheel side)

<table>
<thead>
<tr>
<th>Engine</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
<th>1800</th>
</tr>
</thead>
<tbody>
<tr>
<td>(061.00)</td>
<td>(062.02)</td>
<td>(062.12)</td>
<td>(061.34)</td>
<td></td>
</tr>
</tbody>
</table>

Intake
- **Opening**: Linear displacement of tappet (Sa) 0.25 (0.010) 27°30' to 30°30' 14°49' to 17°49'
- **Closing**: Linear displacement of tappet (Sa) 0.25 (0.010) 27°30' to 30°30' 14°49' to 17°49'

Exhaust
- **Opening**: Linear displacement of tappet (Sa) 0.20 (0.008) 38°30' to 41°30' 50°45' to 53°45'30''
- **Closing**: Linear displacement of tappet (Sa) 0.20 (0.008) 38°30' to 41°30' 50°45' to 53°45'30''

(1) Engine cold
ENGINE MAIN MECHANICAL UNIT

VALVE TIMING DATA (1)

VALVE TIMING DIAGRAM
(crankshaft rotation clockwise when viewed from front)

<table>
<thead>
<tr>
<th></th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00)</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>Intake</td>
<td>Opens (BTDC)</td>
<td>Closes (ABDC)</td>
<td>Angle</td>
<td>Opens (BBDC)</td>
</tr>
<tr>
<td></td>
<td>40°30'</td>
<td>64°30'</td>
<td>285°8'</td>
<td>63°54'</td>
</tr>
<tr>
<td></td>
<td>48°</td>
<td>67°</td>
<td>295°</td>
<td>60°20'</td>
</tr>
<tr>
<td></td>
<td>28°44' to 21°44'</td>
<td>90°28' to 97°28'</td>
<td>299°12'</td>
<td>58°12'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>Closes (ATDC)</td>
<td>Angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27°54'</td>
<td>271°48'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41°20'</td>
<td>281°40'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33°48'</td>
<td>272°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Engine cold

VALVE TIMING DATA (1)

VALVE TIMING DIAGRAM
(crankshaft rotation clockwise when viewed from front)

<table>
<thead>
<tr>
<th></th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(061.00)</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>Intake</td>
<td>Opens (BTDC)</td>
<td>Closes (ABDC)</td>
<td>Angle</td>
<td>Opens (BBDC)</td>
</tr>
<tr>
<td></td>
<td>53°44'</td>
<td>65°28'</td>
<td>299°12'</td>
<td>58°12'</td>
</tr>
<tr>
<td></td>
<td>53°44'</td>
<td>65°28'</td>
<td>275°12'</td>
<td>60°</td>
</tr>
<tr>
<td></td>
<td>40°36'</td>
<td>54°36'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>Closes (ATDC)</td>
<td>Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33°48'</td>
<td>272°</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12°</td>
<td>252°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Engine cold
CYLINDER LINERS, PISTONS, RINGS AND PINS

Cylinder liners

![Diagram of cylinder liners with dimensions labeled (mm or in)]

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>Liner bore dia.</td>
<td>(a)</td>
</tr>
<tr>
<td>Class A (Blue)</td>
<td>77.985 to 77.994</td>
</tr>
<tr>
<td>Class B (Pink)</td>
<td>77.995 to 78.004</td>
</tr>
<tr>
<td>Class C (Green)</td>
<td>78.005 to 78.014</td>
</tr>
<tr>
<td>Liner stand-out (1)</td>
<td>(b)</td>
</tr>
<tr>
<td>Max. ovality and taper (2)</td>
<td></td>
</tr>
<tr>
<td>Max. out-of-roundness</td>
<td></td>
</tr>
</tbody>
</table>

(1) Check after fitting liner retainers and tightening nuts to 10 - 15 Nm (1 to 1.5 kgm; 7.4 to 11.1 ft.lbf)
(2) Max. limit along entire liner length (a)
(3) 26 mm (1 in) for 2000 engines (062.12)
Piston rings

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>Top compression ring</td>
<td>1.478 to 1.490</td>
</tr>
<tr>
<td></td>
<td>(0.0562 to 0.0587)</td>
</tr>
<tr>
<td>2nd compression ring</td>
<td>1.728 to 1.740</td>
</tr>
<tr>
<td></td>
<td>(0.0680 to 0.0685)</td>
</tr>
<tr>
<td>Oil control ring</td>
<td>3.978 to 3.990</td>
</tr>
<tr>
<td></td>
<td>(0.1566 to 0.1571)</td>
</tr>
<tr>
<td></td>
<td>3.478 to 3.490</td>
</tr>
<tr>
<td></td>
<td>(0.1369 to 0.1374)</td>
</tr>
<tr>
<td>Top compression ring</td>
<td>0.30 to 0.45</td>
</tr>
<tr>
<td></td>
<td>(0.012 to 0.018)</td>
</tr>
<tr>
<td></td>
<td>0.30 to 0.50</td>
</tr>
<tr>
<td></td>
<td>(0.0118 to 0.0197)</td>
</tr>
<tr>
<td>2nd compression ring</td>
<td>0.30 to 0.45</td>
</tr>
<tr>
<td></td>
<td>(0.012 to 0.018)</td>
</tr>
<tr>
<td></td>
<td>0.30 to 0.50</td>
</tr>
<tr>
<td></td>
<td>(0.0118 to 0.0197)</td>
</tr>
<tr>
<td>Oil control ring</td>
<td>0.30 to 0.45</td>
</tr>
<tr>
<td></td>
<td>(0.012 to 0.018)</td>
</tr>
<tr>
<td></td>
<td>0.25 to 0.50</td>
</tr>
<tr>
<td></td>
<td>(0.010 to 0.016)</td>
</tr>
</tbody>
</table>

(1) Fitted in checking fixture or cylinder liner
(2) For 061.34 engine only
ENGINE MAIN MECHANICAL UNIT

Pistons

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>Piston diameter (1)</td>
<td></td>
</tr>
<tr>
<td>Class A (Blue)</td>
<td>77.945 to 77.955</td>
</tr>
<tr>
<td>Class B (Pink)</td>
<td>77.955 to 77.965</td>
</tr>
<tr>
<td>Class C (Green)</td>
<td>77.965 to 77.975</td>
</tr>
<tr>
<td>Top compression ring groove width (b)</td>
<td>1.535 to 1.555</td>
</tr>
<tr>
<td>2nd compression ring groove width (c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil control ring groove width (d)</td>
<td>4.015 to 4.035</td>
</tr>
<tr>
<td>Pin bore dia. (e)</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>White</td>
</tr>
</tbody>
</table>

(1) Measure at right angles to pin bore and at the following distance from lower edge of skirt:
1600 engine [Borgo piston, 17 mm (0.67 in) — Mondial piston, 20 mm (0.79 in)] - 1800 engine (15 mm, 0.59 in) - 2000 engine (17 mm, 0.67 in)
(2) Borgo piston (3) Mondial piston (4) For 061.34 engine only

Piston pins

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.000)</td>
</tr>
<tr>
<td>Pin diameter (a)</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>White</td>
</tr>
<tr>
<td>Pin clearance</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>White</td>
</tr>
</tbody>
</table>

(1) For 061.34 engine only
Engine Main Mechanical Unit

Crankshaft, Engine Block, Connecting Rods, Bearings and Flywheel

Crankshaft

![Crankshaft Diagram](image)

Table: Engine Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Main journal diameter (a)</td>
<td></td>
</tr>
<tr>
<td>Standard Blue</td>
<td>59.956 to 59.961</td>
</tr>
<tr>
<td>Standard Red</td>
<td>59.966 to 59.976</td>
</tr>
<tr>
<td>Crankpin diameter (b)</td>
<td></td>
</tr>
<tr>
<td>Standard Blue</td>
<td>49.978 to 49.988</td>
</tr>
<tr>
<td>Standard Red</td>
<td>49.988 to 49.998</td>
</tr>
<tr>
<td>Center main bearing journal width (c)</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>30.000 to 30.035</td>
</tr>
</tbody>
</table>

Additional Specifications

- Max permissible main journal and crankpin ovality: 0.007 (0.0003)
- Max. permissible main journal and crankpin taper: 0.01 (0.0004)
- Max. crankpin misalignment relative to main journals: 0.015 (0.0006)
- Max. main journal eccentricity: 0.04 (0.0016)
- Max. crankpin offset (crankpin centerline to main journal centerline): 0.3 (0.012)

Table: Additional Engine Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Main journal diameter (a)</td>
<td></td>
</tr>
<tr>
<td>Standard Blue (1)</td>
<td>59.956 to 59.961</td>
</tr>
<tr>
<td>Standard Red</td>
<td>59.966 to 59.976</td>
</tr>
<tr>
<td>Crankpin diameter (b)</td>
<td></td>
</tr>
<tr>
<td>Standard Blue (1)</td>
<td>49.978 to 49.988</td>
</tr>
<tr>
<td>Standard Red</td>
<td>49.988 to 49.998</td>
</tr>
<tr>
<td>Center main bearing journal width (c)</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>30.000 to 30.035</td>
</tr>
</tbody>
</table>

Additional Specifications

- Max permissible main journal and crankpin ovality: 0.007 (0.0003)
- Max. permissible main journal and crankpin taper: 0.01 (0.0004)
- Max. crankpin misalignment relative to main journals: 0.015 (0.0006)
- Max. main journal eccentricity: 0.04 (0.0016)
- Max. crankpin offset (crankpin centerline to main journal centerline): 0.3 (0.012)

(1) Standard Light Blue for 061.34 engine only

March 1986

01-66

PA346980000003
Engine Block

![Diagram of engine block](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600 (016.00 - 061.00)</td>
</tr>
<tr>
<td>Timing idler jackshaft bushing fitted I.D. (after reaming) (1)</td>
<td>(a)</td>
</tr>
<tr>
<td>Main bearing housing bore width</td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Center main bearing housing width over thrust faces</td>
<td>(c)</td>
</tr>
<tr>
<td>Width between timing idler jackshaft bushings (2)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

(1) Should replacement become necessary, always replace both bushings
(2) Check with cover and gasket installed and tightened
(3) For 1600 (061.00) - 1800 (062.02 and 061.34) and 2000 (062.12) engines only

Connecting Rod

![Diagram of connecting rod](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600 (016.00 - 061.00)</td>
</tr>
<tr>
<td>Small end bore I.D.</td>
<td>(a)</td>
</tr>
<tr>
<td>Big end bore dia.</td>
<td>(b)</td>
</tr>
</tbody>
</table>

PA34699B0000003

01-67

March 1986
ENGINE MAIN MECHANICAL UNIT

Connecting rod bearings

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>Connecting rod bearing wall thickness</td>
<td>(a)</td>
</tr>
<tr>
<td>Standard Blue</td>
<td>1.835 to 1.841</td>
</tr>
<tr>
<td>Standard Red</td>
<td>1.829 to 1.835</td>
</tr>
</tbody>
</table>

Main bearings

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>Main bearing wall thickness</td>
<td>(a)</td>
</tr>
<tr>
<td>Standard Blue</td>
<td>1.835 to 1.841</td>
</tr>
<tr>
<td>Standard Red</td>
<td>1.829 to 1.835</td>
</tr>
</tbody>
</table>

Thrust rings

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>Thrust ring thickness (e)</td>
<td>Standard</td>
</tr>
</tbody>
</table>

(1) For 061.34 engine only

March 1986

01-68

PA346980000003
ENGINE MAIN MECHANICAL UNIT

Flywheel

\[\text{mm (in)} \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Center bushing fitted I.D.</td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>(a) After reaming</td>
<td>(061.34)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAMSHAFT, TAPPET, SPRINGS, CYLINDER HEAD AND VALVES

Camshaft

\[\text{mm (in)} \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1800</td>
</tr>
<tr>
<td>Camshaft journal diameter</td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>(a)</td>
<td>(061.34)</td>
</tr>
<tr>
<td>Camshaft journal housing bore dia.</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
</tr>
</tbody>
</table>

Tappet

\[\text{mm (in)} \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Tappet diameter</td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>(a) Standard</td>
<td>(061.34)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Oversize</td>
<td></td>
</tr>
</tbody>
</table>
Springs

Description

<table>
<thead>
<tr>
<th>Engine</th>
<th>1800 (016.00)</th>
<th>1800 (016.78)</th>
<th>2000 (016.55)</th>
<th>2000 (017.13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring length with valve open (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer spring mm (in)</td>
<td>27.5 (1.08)</td>
<td>25.5 (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner spring mm (in)</td>
<td>26 (1.02)</td>
<td>23.5 (0.93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load at length (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer spring kg (lb)</td>
<td>35.67 to 37.33 (78.6 to 82.3)</td>
<td>38.7 to 40.3 (85.3 to 88.3)</td>
<td>46.10 to 47.90 (101.6 to 105.6)</td>
<td></td>
</tr>
<tr>
<td>Inner spring kg (lb)</td>
<td>22.24 to 23.16 (49.0 to 51.1)</td>
<td>24.87 to 25.73 (54.8 to 56.7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cylinder head

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve guide housing bore dia.</td>
<td>1600</td>
</tr>
<tr>
<td>(a)</td>
<td>(016.00 - 061.000)</td>
</tr>
<tr>
<td>Valve guide O.D.</td>
<td>(b)</td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Valve guide fitted I.D. (after reaming)</td>
<td>(c)</td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve guide stand-out</td>
<td>(d)</td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappet housing bore dia.</td>
<td>(e)</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Oversize</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve seat insert housing bore dia.</td>
<td>(f)</td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.532 to 42.557</td>
</tr>
<tr>
<td></td>
<td>(1.6745 to 1.6755)</td>
</tr>
<tr>
<td></td>
<td>38.532 to 38.557</td>
</tr>
<tr>
<td></td>
<td>(1.5170 to 1.5180)</td>
</tr>
<tr>
<td></td>
<td>42.832 to 42.857</td>
</tr>
<tr>
<td></td>
<td>(1.6863 to 1.6873)</td>
</tr>
<tr>
<td></td>
<td>38.832 to 38.857</td>
</tr>
<tr>
<td></td>
<td>(1.5288 to 1.5298)</td>
</tr>
<tr>
<td></td>
<td>42.597 to 42.632</td>
</tr>
<tr>
<td></td>
<td>(1.6770 to 1.6784)</td>
</tr>
<tr>
<td>Valve seat insert O.D.</td>
<td>(g)</td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.597 to 38.632</td>
</tr>
<tr>
<td></td>
<td>(1.5196 to 1.5209)</td>
</tr>
<tr>
<td></td>
<td>38.642 to 38.658</td>
</tr>
<tr>
<td></td>
<td>(1.5213 to 1.5220)</td>
</tr>
<tr>
<td></td>
<td>42.897 to 42.932</td>
</tr>
<tr>
<td></td>
<td>(1.6889 to 1.6902)</td>
</tr>
<tr>
<td></td>
<td>38.897 to 38.932</td>
</tr>
<tr>
<td></td>
<td>(1.5314 to 1.5328)</td>
</tr>
<tr>
<td></td>
<td>38.942 to 38.958</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>Seat insert face angle</td>
<td>(h)</td>
</tr>
<tr>
<td>Min. cylinder head height after dressing</td>
<td></td>
</tr>
<tr>
<td>Max. parallelism error between head faces</td>
<td></td>
</tr>
<tr>
<td>Max. head bottom face warpage</td>
<td></td>
</tr>
</tbody>
</table>

(1) Standard
(2) Oversize
(3) For 1600 (061.00) and 2000 (017.13) engines only
(4) For 061.34 engine only
ENGINE MAIN MECHANICAL UNIT

Valves

![Diagram of valve with dimensions](mm (in))

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00)</td>
</tr>
<tr>
<td>Valve stem diameter (a)</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>8.972 to 8.987 (0.3532 to 0.3538)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>8.935 to 8.990 (0.3518 to 0.3528)</td>
</tr>
<tr>
<td>Valve head dia. - ATE type (b)</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>41.000 to 41.200 (1.6142 to 1.6220)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>37.000 to 37.200 (1.4567 to 1.4646)</td>
</tr>
<tr>
<td>Valve head dia. - Eaton-Livia type (b)</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>41.000 to 41.150 (1.6142 to 1.6201)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>37.000 to 37.150 (1.4567 to 1.4626)</td>
</tr>
</tbody>
</table>

Valve Measurements

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(061.00)</td>
</tr>
<tr>
<td>Valve stem diameter (a)</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>8.972 to 8.987 (0.3532 to 0.3538)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>8.935 to 8.990 (0.3518 to 0.3528)</td>
</tr>
<tr>
<td>Valve head dia. - ATE type (b)</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>41.000 to 41.200 (1.6142 to 1.6220)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>37.000 to 37.200 (1.4567 to 1.4646)</td>
</tr>
<tr>
<td>Valve head dia. - Eaton-Livia type (b)</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>41.850 to 42.000 (1.6476 to 1.6535)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>37.000 to 37.150 (1.4567 to 1.4626)</td>
</tr>
</tbody>
</table>

1. ATE exhaust valve stem diameter is 8.940 to 8.960 mm (0.3520 to 0.3528 in) for 2000 engine (062.12)
2. For Eaton-Livia valve

March 1986

01-72

PA346980000003
ENGINE MAIN MECHANICAL UNIT

FITTING DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(160.00 - 061.00)</td>
<td>(161.73 - 062.02)</td>
<td>(161.55 - 062.12)</td>
<td>(161.73 - 062.12)</td>
</tr>
<tr>
<td>Liner/piston clearance</td>
<td></td>
<td>0.030 to 0.049 (0.0012 to 0.019)</td>
<td>0.035 to 0.067 (0.0014 to 0.026)</td>
<td>0.040 to 0.059 (0.0016 to 0.0223)</td>
</tr>
<tr>
<td>Ring/groove clearance</td>
<td>Top compression ring</td>
<td>0.045 to 0.077 (1) (0.0018 to 0.0030)</td>
<td>0.035 to 0.067 (1) (0.0018 to 0.0030)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.040 to 0.059 (0.0016 to 0.0019) (3)</td>
<td>0.040 to 0.059 (0.0016 to 0.0019) (3)</td>
<td></td>
</tr>
<tr>
<td>Ring/groove clearance</td>
<td>2nd compression ring</td>
<td>0.035 to 0.067 (0.0014 to 0.0026)</td>
<td>0.035 to 0.067 (0.0014 to 0.0026)</td>
<td></td>
</tr>
<tr>
<td>Pin/piston bore clearance</td>
<td>Oil control ring</td>
<td>0.025 to 0.057 (0.0010 to 0.0022)</td>
<td>0.025 to 0.057 (0.0010 to 0.0022)</td>
<td></td>
</tr>
<tr>
<td>Pin/piston bore clearance</td>
<td>Black</td>
<td>0.003 to 0.008 (0.0001 to 0.0003)</td>
<td>0.004 to 0.009 (0.0002 to 0.0003) (3)</td>
<td>0.003 to 0.008 (0.0001 to 0.0003) (3)</td>
</tr>
<tr>
<td>Pin/small end clearance</td>
<td>White</td>
<td>0.003 to 0.008 (0.0001 to 0.0003)</td>
<td>0.004 to 0.009 (0.0002 to 0.0003) (3)</td>
<td>0.003 to 0.008 (0.0001 to 0.0003) (3)</td>
</tr>
<tr>
<td>Main bearing journal running</td>
<td>Black</td>
<td>0.008 to 0.021 (0.0003 to 0.0008)</td>
<td>0.008 to 0.021 (0.0003 to 0.0008)</td>
<td>0.008 to 0.021 (0.0003 to 0.0008)</td>
</tr>
<tr>
<td>clearance</td>
<td>White</td>
<td>0.005 to 0.018 (0.0002 to 0.0007)</td>
<td>0.005 to 0.018 (0.0002 to 0.0007)</td>
<td>0.005 to 0.018 (0.0002 to 0.0007)</td>
</tr>
<tr>
<td>Crankpin running clearance</td>
<td>Blue</td>
<td>0.025 to 0.060 (0.0010 to 0.0024)</td>
<td>0.025 to 0.060 (0.0010 to 0.0024)</td>
<td>0.025 to 0.060 (0.0010 to 0.0024)</td>
</tr>
<tr>
<td>Crankshaft end play</td>
<td>Red</td>
<td>0.027 to 0.062 (0.0011 to 0.0024)</td>
<td>0.027 to 0.062 (0.0011 to 0.0024)</td>
<td>0.027 to 0.062 (0.0011 to 0.0024)</td>
</tr>
<tr>
<td>Crankshaft end play</td>
<td></td>
<td>0.080 to 0.265 (0.0031 to 0.0104)</td>
<td>0.080 to 0.265 (0.0031 to 0.0104)</td>
<td>0.080 to 0.265 (0.0031 to 0.0104)</td>
</tr>
<tr>
<td>Big end play</td>
<td></td>
<td>0.2 to 0.3 (0.006 to 0.012)</td>
<td>0.2 to 0.3 (0.006 to 0.012)</td>
<td>0.2 to 0.3 (0.006 to 0.012)</td>
</tr>
<tr>
<td>Camshaft journal running clearance</td>
<td></td>
<td>0.020 to 0.074 (0.0008 to 0.0029)</td>
<td>0.020 to 0.074 (0.0008 to 0.0029)</td>
<td>0.020 to 0.074 (0.0008 to 0.0029)</td>
</tr>
<tr>
<td>Camshaft end play</td>
<td></td>
<td>0.085 to 0.162 (0.0026 to 0.0072)</td>
<td>0.085 to 0.162 (0.0026 to 0.0072)</td>
<td>0.085 to 0.162 (0.0026 to 0.0072)</td>
</tr>
<tr>
<td>Tappet working clearance</td>
<td></td>
<td>0.011 to 0.052 (0.0004 to 0.0020)</td>
<td>0.011 to 0.052 (0.0004 to 0.0020)</td>
<td>0.011 to 0.052 (0.0004 to 0.0020)</td>
</tr>
<tr>
<td>Valve stem/guide</td>
<td>Intake</td>
<td>0.013 to 0.043 (0.0005 to 0.0017)</td>
<td>0.013 to 0.043 (0.0005 to 0.0017)</td>
<td>0.013 to 0.043 (0.0005 to 0.0017)</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.040 to 0.080 (0.0016 to 0.0031)</td>
<td>0.040 to 0.080 (0.0016 to 0.0031)</td>
<td>0.040 to 0.080 (0.0016 to 0.0031)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.040 to 0.075 (0.0016 to 0.0030) (3)</td>
<td>0.040 to 0.075 (0.0016 to 0.0030) (3)</td>
<td>0.040 to 0.075 (0.0016 to 0.0030) (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.040 to 0.070 (0.0016 to 0.0028) (4)</td>
<td>0.040 to 0.070 (0.0016 to 0.0028) (4)</td>
<td>0.040 to 0.070 (0.0016 to 0.0028) (4)</td>
</tr>
<tr>
<td>Valve guide interference fit</td>
<td>Intake</td>
<td>0.015 to 0.054 (0.0006 to 0.0021)</td>
<td>0.015 to 0.054 (0.0006 to 0.0021)</td>
<td>0.015 to 0.054 (0.0006 to 0.0021)</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.015 to 0.054 (0.0006 to 0.0021)</td>
<td>0.015 to 0.054 (0.0006 to 0.0021)</td>
<td>0.015 to 0.054 (0.0006 to 0.0021)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.030 to 0.069 (0.0012 to 0.0027) (3)</td>
<td>0.030 to 0.069 (0.0012 to 0.0027) (3)</td>
<td>0.030 to 0.069 (0.0012 to 0.0027) (3)</td>
</tr>
<tr>
<td>Seat insert interference fit</td>
<td>Intake</td>
<td>0.04 to 0.10 (0.002 to 0.004)</td>
<td>0.04 to 0.10 (0.002 to 0.004)</td>
<td>0.04 to 0.10 (0.002 to 0.004)</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.085 to 0.126 (0.0033 to 0.0050) (3)</td>
<td>0.085 to 0.126 (0.0033 to 0.0050) (3)</td>
<td>0.085 to 0.126 (0.0033 to 0.0050) (3)</td>
</tr>
</tbody>
</table>

(1) Borgo piston (2) Mondial piston (3) For 061.34 engine only (4) For Eaton-Livia valve

SHRINK-FIT TEMPERATURE

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder head (valve seat installation)</td>
<td>100°C (212°F)</td>
</tr>
<tr>
<td></td>
<td>140°C (284°F) (1)</td>
</tr>
<tr>
<td>Starter ring gear</td>
<td>120° to 140°C (248 to 284°F)</td>
</tr>
</tbody>
</table>

(1) For 061.34 engine only

PA346980000003 01-73 March 1986
GENERAL REQUIREMENTS

FLUIDS AND LUBRICANTS

<table>
<thead>
<tr>
<th>Application</th>
<th>Type</th>
<th>Name</th>
<th>Quantity - kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear main bearing cap seals</td>
<td>FLUID</td>
<td>UNION CARBIDE CHEMICALS CO: Ucon Lubricant 50HB-5100 MILLOIL: Lubricant for rubber Part No. 4500-17502</td>
<td>As required</td>
</tr>
<tr>
<td>Crankshaft seals (front and rear)</td>
<td>OIL GREASE</td>
<td>AGIP SINT 2000 10W50 ISECO Part No. 3631-69352 Part No. 3671-69841</td>
<td>As required</td>
</tr>
<tr>
<td>Engine oil - full oil pan</td>
<td>OIL</td>
<td>AGIP SINT 2000 10W50 IP SINTIAK 10W40 Part No. 3631-69352 Part No. 3631-69352</td>
<td>0.5 (1.1) 1.150 (2.54) 5 (11) 0.415 (0.91) per well (2)</td>
</tr>
<tr>
<td>Spark plug threads</td>
<td>OIL</td>
<td>ISEO: Molykote A Part No. 4500-18304</td>
<td>As required</td>
</tr>
</tbody>
</table>

(1) Fill only after camshaft removal
(2) With cylinder head completely dry

SEALANTS

<table>
<thead>
<tr>
<th>Application</th>
<th>Type</th>
<th>Name</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front cover screws (to head)</td>
<td>SEALING COMPOUND</td>
<td>DIRING: Curil Part No. 3522-00017</td>
<td>As required</td>
</tr>
<tr>
<td>Camshaft cover contact surface</td>
<td>SEALING COMPOUND</td>
<td>DIRING: Helidite Part No. 3522-00015</td>
<td>As required</td>
</tr>
<tr>
<td>Flywheel screws</td>
<td>SEALING COMPOUND</td>
<td>LOCTITE 270 (green) Part No. 3524-00009</td>
<td>As required</td>
</tr>
<tr>
<td>Timing variator spigot on camshaft</td>
<td>SEALING COMPOUND</td>
<td>DIRING Helidite DOW CORNING: Hermetite Part No. 3522-00015</td>
<td>As required</td>
</tr>
</tbody>
</table>

(1) To remove traces of old gasket from cylinder head or block faces use butyl acetate or methylketone
(2) Before applying sealing compound, remove all traces of old sealant from threads using a suitable brush and compressed air
Always degrease threads using trichloroethylene or chlorothene

ABRASIVES

<table>
<thead>
<tr>
<th>Application</th>
<th>Type</th>
<th>Name</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valves and valve seats</td>
<td>GRINDING PASTE</td>
<td>SIPAL AREXONS: Carbosilicum for valves Part No. 4100-31502</td>
<td>As required</td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

TIGHTENING TORQUES

<table>
<thead>
<tr>
<th>Part</th>
<th>Nm (kgm; ft.lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>(016.00 - 061.00)</td>
</tr>
<tr>
<td>Main bearing cap nuts (wet)</td>
<td>46 to 49</td>
</tr>
<tr>
<td>Flywheel screws (with specified sealant)</td>
<td>110 to 113</td>
</tr>
<tr>
<td>Connecting rod cap nuts (wet)</td>
<td>49 to 52</td>
</tr>
<tr>
<td>Crankshaft pulley nut (wet)</td>
<td>187 to 195</td>
</tr>
<tr>
<td>Varistor on camshaft</td>
<td>98 to 117</td>
</tr>
<tr>
<td>Varistor gear locking (wet)</td>
<td>108 to 118</td>
</tr>
</tbody>
</table>

Cylinder head nut tightening sequence

1. **(1)**

 a) On head installation proceed as follows:

 - with engine cold, tighten progressively in proper sequence with washers, nuts and threads lubricated:

 - 77 to 79 (7.9 to 8.1; 56.8 to 58.3)
 - 71 to 73 (7.2 to 7.4; 52.3 to 53.8)
 - 77 to 79 (7.9 to 8.1; 56.8 to 58.3)

 - with engine warm, tighten without slackening:

 - 82 to 83 (8.4 to 8.5; 60.5 to 61.2)
 - 75 to 78 (7.6 to 7.7; 55.3 to 56.1)
 - 82 to 83 (8.4 to 8.5; 60.5 to 61.2)

 b) After 1000 km (620 mi.), slacken nuts one at a time by one turn in proper sequence when engine is cool, lubricate washer and nut contact surfaces and re-tighten:

 - 86 to 88 (8.8 to 9; 63.4 to 64.9)
 - 76 to 78 (7.8 to 8; 56.1 to 57.5)
 - 86 to 88 (8.8 to 9; 63.4 to 64.9)

Camshaft bearing cap nuts (wet)

20 to 22 (2 to 2.25; 14.8 to 16.2)

Main bearing locknut (wet)

11 to 13 (1.1 to 1.3; 8.1 to 9.6)

Camshaft cover knobs

14 to 20 (1.4 to 2; 10.3 to 14.8)

Front cover and water pump nuts

14 to 22 (1.36 to 2.25; 10.3 to 18.2)

Spark plugs

25 to 34 (2.5 to 3.5; 18.4 to 25.1)

Coolant temperature sending unit on intake manifold

34 to 39 (3.5 to 4; 25.1 to 28.8)

High coolant temperature indicator sending unit on cylinder head

20 to 25 (2 to 2.5; 14.8 to 18.4)

Thermostat cover screws (2)

10 to 16 (1 to 1.6; 7.4 to 11.8)

Nuts securing turbocharger to exhaust manifold (3)

38 to 47 (3.9 to 4.8; 28 to 34.6)

Nuts securing turbocharger exhaust gas union to turbine (3)

38 to 47 (3.9 to 4.8; 28 to 34.6)

Bolts securing turbocharger exhaust gas union to exhaust pipe (3)

19 to 24 (1.9 to 2.4; 14 to 17.7)

Nuts securing exhaust manifold to cylinder head (3)

19 to 24 (1.9 to 2.4; 14 to 17.7)

Bolts securing turbocharger lower support to engine block (3)

19 to 24 (1.9 to 2.4; 14 to 17.7)

Bolts securing turbocharger to lower support (3)

19 to 24 (1.9 to 2.4; 14 to 17.7)

Bolts securing oil delivery hose to turbocharger (3)

19 to 24 (1.9 to 2.4; 14 to 17.7)

Nut securing oil filter support (3)

19 to 24 (1.9 to 2.4; 14 to 17.7)

Bolt securing oil delivery hose union to engine block (3)

40 to 50 (4.0 to 5.0; 29.5 to 36.6)

Bolt securing water delivery hose union to turbocharger (3)

50 to 62 (5.0 to 6.2; 36.6 to 45.7)

Bolt securing water delivery hose union to engine block (3)

50 to 62 (5.0 to 6.2; 36.6 to 45.7)

(1) Proceed as described in paragraph b) for service coupons A and B
(2) Excluding 061.34 engine
(3) For 061.34 engine only

01-75
March 1966

PA3469B0000003
TURBOCHARGER TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Defect</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbocharger noisy or vibrating</td>
<td>• Inefficient lubrication of rotor arm bearings</td>
<td>Check engine oil pressure and turbocharger oil ducts</td>
</tr>
<tr>
<td></td>
<td>• Leakage into the intake or exhaust manifold</td>
<td>Tighten screws of defective connections and/or replace gaskets</td>
</tr>
<tr>
<td></td>
<td>• Rotor shaft unbalanced</td>
<td>Replace turbocharger</td>
</tr>
<tr>
<td>Supercharging pressure too low</td>
<td>• Leakage in the section between turbocharger and cylinder head</td>
<td>Tighten the retaining screws and/or replace defective gaskets</td>
</tr>
<tr>
<td>(check pressure gauge) or insufficient engine power</td>
<td>• Waste-gate valve badly adjusted</td>
<td>Adjust waste-gate valve and replace if necessary</td>
</tr>
<tr>
<td></td>
<td>• Waste-gate valve does not close</td>
<td>Check valve</td>
</tr>
<tr>
<td></td>
<td>• Supercharging pressure regulating valve open</td>
<td>Clear or replace</td>
</tr>
<tr>
<td></td>
<td>• Exhaust pipe clogged</td>
<td>Replace air filter</td>
</tr>
<tr>
<td></td>
<td>• Air filter clogged</td>
<td>Clean intercooler</td>
</tr>
<tr>
<td></td>
<td>• Intercooler clogged</td>
<td></td>
</tr>
<tr>
<td>Supercharging pressure too high</td>
<td>• Waste-gate valve badly adjusted</td>
<td>Adjust waste-gate valve</td>
</tr>
<tr>
<td>(check pressure gauge)</td>
<td>• Waste-gate valve blocked in closed position</td>
<td>Replace waste-gate valve</td>
</tr>
<tr>
<td></td>
<td>(stem bent)</td>
<td></td>
</tr>
<tr>
<td>Oil leakage from rotor shaft gaskets</td>
<td>• Faulty oil return to engine</td>
<td>Check for obstruction</td>
</tr>
<tr>
<td>(blue exhaust fumes)</td>
<td>• Oil leakage into turbine</td>
<td>Excessively worn rotor segments</td>
</tr>
<tr>
<td></td>
<td>• Engine oil filter clogged</td>
<td>Replace turbocharger</td>
</tr>
<tr>
<td></td>
<td>• Turbocharger rotor gasket worn</td>
<td>Replace oil filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace turbocharger</td>
</tr>
</tbody>
</table>

NOTE:
Supercharged engines are also subject to all the classic troubles (noise, etc.) of induction engines.
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Defect</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine noisy, Crankshaft knocks</td>
<td>Excessive bearing journal or crankpin clearance and/or excessive play at thrust rings</td>
<td>Replace bearings and/or thrust rings</td>
</tr>
<tr>
<td>Pistons and connecting rods knock</td>
<td>• Improper installation</td>
<td>Remove and install correctly</td>
</tr>
<tr>
<td></td>
<td>• Pin shifts sideways</td>
<td>Remove and install correctly</td>
</tr>
<tr>
<td>Camshafts and valves knock</td>
<td>• Excessive valve clearance</td>
<td>Adjust</td>
</tr>
<tr>
<td></td>
<td>• Bad tappet fit</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>• Failed valve spring</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>• Worn camshafts</td>
<td>Replace</td>
</tr>
<tr>
<td>Water pump noisy</td>
<td>Excessive impeller shaft bearing clearance</td>
<td>Replace water pump</td>
</tr>
</tbody>
</table>

Other mechanical problems

<table>
<thead>
<tr>
<th></th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnt valves</td>
<td>• Incorrect valve clearance</td>
<td>Replace and adjust clearance</td>
</tr>
<tr>
<td></td>
<td>• Failed valve spring</td>
<td>Replace</td>
</tr>
<tr>
<td>Excessive piston and cylinder liner wear</td>
<td>• Bad piston fit</td>
<td>Install correctly</td>
</tr>
<tr>
<td></td>
<td>• Poor quality oil</td>
<td>Use suitable oil</td>
</tr>
<tr>
<td></td>
<td>• Air cleaner dirty or ineffective</td>
<td>Replace air cleaner</td>
</tr>
<tr>
<td></td>
<td>• Fuel mixture too rich</td>
<td>Adjust or replace carburettier</td>
</tr>
<tr>
<td>Damaged connecting rod bearing</td>
<td>• Oil starvation</td>
<td>Check lubrication system</td>
</tr>
<tr>
<td></td>
<td>• Poor quality oil</td>
<td>Use suitable oil</td>
</tr>
<tr>
<td></td>
<td>• Crankpins worn or out-of-round</td>
<td>Re-condition or replace</td>
</tr>
<tr>
<td></td>
<td>• Crankpin/bearing grade mismatched</td>
<td>Replace</td>
</tr>
<tr>
<td>Damaged main bearing</td>
<td>• Oil starvation</td>
<td>Check lubrication system</td>
</tr>
<tr>
<td></td>
<td>• Poor quality oil</td>
<td>Use suitable oil</td>
</tr>
<tr>
<td></td>
<td>• Main bearing journals worn or out-of-round</td>
<td>Re-condition or replace</td>
</tr>
<tr>
<td></td>
<td>• Main journal/bearing grade mismatched</td>
<td>Replace</td>
</tr>
<tr>
<td>Timing chain and chain tensioner noisy</td>
<td>• Worn chain</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>• Incorrect chain tension</td>
<td>Adjust tensioner</td>
</tr>
<tr>
<td></td>
<td>• Noisy tensioner</td>
<td>Replace</td>
</tr>
<tr>
<td>Incorrect ignition timing</td>
<td>Distributor incorrectly installed</td>
<td>Adjust</td>
</tr>
</tbody>
</table>

Lubrication

<table>
<thead>
<tr>
<th></th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil leakage</td>
<td>• Loose drain plug</td>
<td>Tighten</td>
</tr>
<tr>
<td></td>
<td>• Leakage past oil pan gasket</td>
<td>Replace gasket</td>
</tr>
<tr>
<td></td>
<td>• Leakage past camshaft cover gasket and/or seals</td>
<td>Replace gasket and seals</td>
</tr>
<tr>
<td></td>
<td>• Leakage past crankshaft seals and gaskets</td>
<td>Replace worn gasket and seals</td>
</tr>
<tr>
<td></td>
<td>• Leakage past filter gasket</td>
<td>Tighten filter</td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>• Clogged pressure regulating valve</td>
<td>Clean valve</td>
</tr>
<tr>
<td></td>
<td>• Poor quality oil</td>
<td>Change oil</td>
</tr>
</tbody>
</table>
SERVICE TOOLS

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.0117</td>
<td>Cylinder liner retainer (2 pieces)</td>
<td>01-29</td>
</tr>
<tr>
<td>A.2.0145</td>
<td>Flywheel retainer</td>
<td>01-31</td>
</tr>
<tr>
<td>A.2.0146</td>
<td>Cylinder head removal tool</td>
<td>01-29</td>
</tr>
<tr>
<td>A.2.0192</td>
<td>Valve support</td>
<td>01-34</td>
</tr>
<tr>
<td>A.2.0195</td>
<td>Cylinder head support base</td>
<td>01-33</td>
</tr>
<tr>
<td>A.2.0196</td>
<td>Cylinder head support fork</td>
<td>01-33</td>
</tr>
<tr>
<td>A.3.0103/0006</td>
<td>Valve spring compressor</td>
<td>01-34</td>
</tr>
<tr>
<td>A.3.0103/0010</td>
<td>Valve spring compressor lever support</td>
<td>01-34</td>
</tr>
</tbody>
</table>

December 1985
<table>
<thead>
<tr>
<th>Reference number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3.0113</td>
<td>Rear main bearing cap seal installer</td>
<td>01-47</td>
</tr>
<tr>
<td>A.3.0134</td>
<td>Valve guide remover</td>
<td>01-37</td>
</tr>
<tr>
<td>A.3.0139/0001</td>
<td>Rear main bearing cap remover lever</td>
<td>01-32</td>
</tr>
<tr>
<td>A.3.0139/0002</td>
<td>Rear main bearing cap puller</td>
<td>01-32</td>
</tr>
<tr>
<td>A.3.0146</td>
<td>Front crankshaft seal installer</td>
<td>01-50</td>
</tr>
<tr>
<td>A.3.0178</td>
<td>Rear crankshaft seal installer</td>
<td>01-47</td>
</tr>
<tr>
<td>A.3.0210</td>
<td>Timing idler bushing puller, adjustable from 15 to 22 mm (0.6 to 0.9 in) dia.</td>
<td>01-40</td>
</tr>
<tr>
<td>A.3.0244</td>
<td>Intake valve guide seal installer</td>
<td>01-44</td>
</tr>
<tr>
<td>A.3.0248</td>
<td>Intake valve guide installer</td>
<td>01-36</td>
</tr>
<tr>
<td>Reference number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>A.3.0247</td>
<td>Valve guide seal remover</td>
<td>01-34</td>
</tr>
<tr>
<td>A.3.0324</td>
<td>Valve spring compressor lever</td>
<td>01-34</td>
</tr>
<tr>
<td>A.5.0103</td>
<td>Camshaft rotator</td>
<td>01-51</td>
</tr>
<tr>
<td>C.6.0122</td>
<td>Top dead center gauge</td>
<td>01-52</td>
</tr>
<tr>
<td>C.6.0148</td>
<td>Cylinder liner/piston standout gauge</td>
<td>01-40</td>
</tr>
<tr>
<td>C.6.0168</td>
<td>Valve clearance gauge</td>
<td>01-45</td>
</tr>
<tr>
<td>C.8.0103</td>
<td>Idler gear bushing plug gauge</td>
<td>01-40</td>
</tr>
<tr>
<td>U.2.0040</td>
<td>Idler gear bushing roughing reamer</td>
<td>01-47</td>
</tr>
<tr>
<td>U.2.0041</td>
<td>Idler gear bushing finishing reamer</td>
<td>01-47</td>
</tr>
</tbody>
</table>
INSTALLATION

For the following operations refer to <Underbody> view of vehicle in question.

CAUTION:
Proceed with great care to avoid damaging the servo-assisted steering box.

1. Preliminary operations
 a. Fit the operating lever on the engine rear support.
 b. Hook the engine on the appropriate lifting bracket, and using a hoist, drop it slowly into the engine compartment, positioning it as necessary with the operating lever.
 c. Centre the engine in its compartment, resting it on the two side supports, and make sure that the screw and stud holes correspond on both supports.
 d. Insert and lock on both sides, screws (22) securing the flexible supports to the body.
 e. Lift the vehicle, screw and lock, on both sides, nuts (22) securing the lower part of the flexible supports to the body.
 f. Remove the operating lever from the engine rear support.

2. Installation of propeller shaft
 a. Reinstall the complete propeller shaft unit on the vehicle by reversing the removal procedure and observing the following instructions.
 - Lubricate propeller shaft front bush and the rear coupling spherical seat with 5 cm³ (0.30 u-in) of ISECO MOLYKOTE BR2 grease.
 - Rotate the propeller shaft a little at a time, blocking it in a suitable way, and tightening the flexible couplings bolts and nuts to the prescribed torque.

 T: Tightening torque
 Nuts and bolts securing the propeller shaft flexible couplings to the engine flywheel and clutch fork
 55 to 57 N-m
 (5.6 to 5.8 kg-m
 40.5 to 42.0 ft-lb)
 - Lock the nuts securing propeller shaft centre support to vehicle floor.

 T: Tightening torque
 Nuts securing propeller shaft centre support
 93 to 103 N-m
 (9.5 to 10.5 kg-m
 70.0 to 77.4 ft-lb)

b. Secure engine rear support pin (3) to body.
 c. Refit engine flywheel protective cover (8).
 d. Reconnect rod (13) to speed gear lever with bolt (13), then fit boot (15).
 e. Secure centre cross member (7) to the body.

3. Installation of exhaust pipe
 a. Position exhaust pipe on retaining rings (8).
 b. Loosen bolts (18).
 c. Connect the centre section of the exhaust pipe to the end section without tightening clamp (17).
 d. Secure the exhaust pipes to the corresponding manifolds inserting new gaskets.
 e. Shake he exhaust pipe several times to ensure that it is correctly aligned.
 f. Tighten bolts (18) and clamp (17) on end section.

For the following operations refer to <View of engine compartment> of vehicle in question.

4. Installation of power steering
 a. Position power steering pump (25), secure it to front bracket (25), and lock both screws.
 b. Screw, without locking, the two screws securing the pump to the rear bracket.
 c. Fit the drive belt on the pulleys, move the pump outwards to obtain prescribed belt tension, then lock the securing screws on front and rear brackets.

 Load to be applied to belt centre:
 P = 15 to 30 kg (33.1 to 66.1 lb)

 Deflection:
 F = 13 mm (0.51 in)

5. Installation of air conditioner compressor
 a. Reconnect compressor lower bracket to engine block securing it from under the vehicle with the corresponding screws.
 b. Refit compressor drive belt, and lock nut (49).
 c. Restore correct tension to compressor drive belt and lock nut (47).

Load to be applied to belt centre:
P = 20 to 35 kg (44.1 to 77.2 lb)

Deflection:
F = 14 mm (0.55 in)

 d. If hose unions (50) are disconnected, secure them to compressor (48).

6. Installation of radiator
 Refit radiator together with electric fan, then reconnect cooling system tubing by reversing the order of the procedure described in <Removal> - step 5.

7. Electrical connections
 Restore electrical connection, reversing the order of the procedure described in <Removal> - step 3.

8. Installation of accelerator control cable
 a. Insert the accelerator control cable with sheath under the intake air box, and position it on bracket (9).
 b. Rotate lever (7) and hook up the end of the accelerator control cable.

9. Air and fuel supply system
 Restore air and fuel supply system by reversing the procedure described in <Removal> - step 2.

10. Final operations
 a. Reconnect servobrake vacuum intake hose (14) to single - acting valve on intake air box.
 b. Position battery in its compartment and secure it with the appropriate bracket.
 c. Refill and adjust the following (see: <WORKSHOP MANUAL>):

 Alfa 90
 Group 00, Group 90.
 - Engine oil
 - Engine coolant
 - Power steering system oil level
 - Air conditioning system Freon
 - Timing check
 - Accelerator control cable adjustment
 - Engine idle speed adjustment
 - Adjustment of percentage off exhaust CO at idle
 - Electric fan activation check on engine at normal running temperature
10. Exhaust pipe
a. Back off nuts retaining down pipe 5 to manifolds.
b. Back off three screws 20 retaining bracket 19 to bell housing.
c. Slacken clip 17 and separate center pipe to tail pipe.
d. Remove down pipe and center pipe together releasing four straps 8.

11. Propeller shaft
a. Back off retaining screws and remove center crossmember 7.
b. Slide off dust excluder 15, back off bolt 13 and disconnect link 14.
 If necessary, back off four screws from support 12 and move support to facilitate propeller shaft removal.
c. Back off bolts and remove flywheel protector 6.
d. With transmission in neutral, suitably turn propeller shaft and remove each nut 2 and bolt 15 retaining shaft to flywheel and clutch fork respectively.
e. Back off two screws 4 and disconnect rear engine mount pivot 3 from body.
f. Back off two nuts 10 and disconnect center bearing 11 from body.
g. Back off screws retaining rear crossmember to body.
h. Raise rear axle using a platform lift with cradle A.2.0075.
 Remove propeller shaft from clutch fork.

12. Final operations
a. Install a suitable service handle on rear engine mount to facilitate engine removal.
b. Back off nuts 22 retaining side mounts 23 at bottom.
c. Lower platform lift, and back off screws 24 retaining side mounts 23 at top.
d. Secure engine to lifting brackets, hoist engine and lift clear of engine compartment guiding it with the service handle.

NOTE:
Pay the utmost attention to prevent damaging power steering housing.

INSTALATION
For the following operations refer to bottom view of vehicle in question.

NOTE:
Pay the utmost attention to prevent damaging power steering housing.

1. Preliminary operations
a. Install service handle on rear engine mount.
b. Fasten engine to lifting bracket and, using a suitable hoist, lower powerplant slowly in engine compartment guiding it with the service handle.
c. Centralize engine in engine compartment over the two side mounts and ensure that holes for screws and studs are correctly aligned on both mounts.
d. Start and tighten screws 24 retaining cushion mounts to body on both sides.
e. Raise vehicle, start and tighten nuts 22 retaining mounts to body at bottom on both sides.
f. Remove service handle from rear engine mount.

2. Propeller shaft
a. Reverse the removal sequence and adhere to the following instructions:
 — Lubricate shaft front bushing and rear joint spherical seat using 5 cm³ (0.2 fl-oz) of ISECO MOLYKOTE BR2 grease.
 — Restrain shaft by suitable means and tighten nuts and bolts of flex. couplings each in turn to the specified torque.

T : Tightening torque
Nuts and bolts retaining shaft flex. couplings to flywheel and clutch fork
55 to 57 N-m
(5.6 to 5.8 kg-m
40.6 to 42.0 ft-lb)

— Tighten nuts retaining center bearing to underbody.

T : Tightening torque
Center bearing nuts
93 to 103 N-m
(9.5 to 10.5 kg-m
68.6 to 76.0 ft-lb)

b. Fasten rear engine mount pivot 3 to body.
c. Install flywheel protector 6.
d. Connect remote control link 14 to gear lever using bolt 13 and position dust excluder 15.
e. Fasten center crossmember 7 to body.

PA346980000001
01-88/5
May 1985
3. Exhaust system
a. Position exhaust pipe over straps (8).
b. Finger tighten bolts (16).
c. Connect center pipe to rail pipe without tightening clip (17).
d. Fasten down pipes to manifolds installing new gaskets.
e. Rock exhaust pipe to obtain proper alignment.
f. Tighten bolts (18) and clip (17) on tail pipe.

In order to follow the following steps of the procedure consult the figure «View of the Engine Compartment» of the vehicle in question.

4. Steering pump
a. Position steering pump (59), fasten to front bracket (57) and tighten two capscrews.
b. Start two screws retaining pump to rear bracket.
c. Install drive belt on pulleys, move pump outward to obtain correct tensioning and tighten screws on front and rear brackets.

5. Air conditioner compressor
a. Install compressor bottom bracket to block and secure with the associated screws from vehicle underside.
b. Install compressor drive belt and tighten nut (52).
c. Tension belt and tighten nut (51).

Force to be applied to belt at mid-leg:
\[P = 15 \text{ to } 30 \text{ kg (33.1 to 66.1 lb)} \]

Belt yield:
\[F = 13 \text{ mm (0.5 in)} \]

6. Radiator
Install radiator with attached fan, and connect coolant lines adopting a reversal of the removal sequence, op. 6.

7. Electrical connections
Establish electrical connections, adopting a reversal of the removal sequence, op. 4.

8. Accelerator cable
Connect accelerator cable adopting a reversal of the removal sequence, op. 5.

9. Air and fuel system
Establish connections of air induction and fuel system adopting a reversal of the removal sequence, ops. 2 and 3.

10. Final operations
a. Connect brake servo vacuum pipe (1) to right cylinder head connection.
b. Install battery in its recess, secure with bracket and connect terminal clamps.
c. For references and adjustments see specifications of appropriate groups.
d. Release hood, prop up and install hinge bolts on both sides of vehicle.
e. Install wiper arms.
FOREWORD
This section contains all the data and procedures relating to the removal and installation of the engine fitted on the following Alfa Romeo vehicle:

GTV 6 2.5 (016.46)

Given that the operations involved in removing and installing the engine are somewhat numerous, the operator is urged to read the intervention procedures carefully and to examine with care the illustration of the assembly that give an indispensable but of course incomplete overall view of the engine.

Location of engine supports

Following the above advice permits the correct operational techniques to be acquired and familiarizes the technician with the technical data, and caution and warning captions.

1. Spacer
2. Nut securing rear support to body
3. Rear support
4. Screw securing brackets to flywheel bell housing
5. Exhaust pipe support brackets
6. Exhaust pipe support brackets rubber bushing
7. Screw securing rubber bushing
8. LH side support
9. Screw securing support to engine block
10. Screw securing side support to body
11. LH side support flexible component
12. Nut securing side support to body
1. Vacuum servo line
2. Air intake box
3. Air supply measurement cable
4. Air supply measuring device
5. Bracket
6. Idling adjustment by-pass line
7. Oil vapour vent pipe
8. Vacuum regulating valve air intake line (versions: Switzerland, Sweden, Australia)
9. Vacuum regulating valve (versions: Switzerland, Sweden, Australia)
10. Auxiliary air delivery line for cold starting
11. Auxiliary air solenoid valve
12. Corrugated sleeve
13. Air filter cover
14. Fuel delivery line to manifold
15. Excess fuel return line
16. Thermostat group
17. Coolant temperature warning light and indicator cables
18. Thermostat group earth cable
19. Cable transmitting coolant temperature to ECU
20. Cold starting thermal switch cable
21. Air intake box guard
22. Earth plate
23. Electrical supply cables
24. Throttle opening position sender cable
25. Electro-injector supply cable for cold starting
26. Auxiliary air solenoid valve supply cable
27. Earth cable
28. Oil pressure sender cable
29. Starter supply cable
30. Terminal board
31. Energizing cable
32. Terminal board
33. Engine earth cable
34. Generator supply cable
35. Battery re-charging cable
36. Coil high voltage cable
37. Low voltage cable
38. Compressor electro-magnetic coupling supply cable
39. Conditioner compressor earth cable
40. Right and left fan supply cable
41. Fan enabling cable
42. Coolant return sleeve to thermostat group
43. Coolant return sleeve to radiator
44. Radiator vent pipe
45. Coolant outlet sleeve from radiator
46. Liquid return line from heater
47. Radiator filling line
48. Radiator fixing screws
49. Radiator
50. Compressor belt stretcher retaining nut
51. Belt stretcher bracket retaining screw
52. Conditioning system compressor
53. Compressor Freon inlet/outlet lines
54. Power steering oil reservoir
55. Power steering oil reservoir line
56. Pressure line
57. Return line
1. Oil drain plug
2. Exhaust pipe (front section) retaining nuts
3. Exhaust pipe (front section)
4. Exhaust pipe support bracket retaining bolts
5. Exhaust pipe support bracket
6. Exhaust pipe (centre section) retaining nuts
7. Retaining rings
8. Propeller shaft guard retaining screws
9. Propeller shaft guard
10. Centre cross member
11. Centre cross member retaining bolts
12. Boot
13. Gear control rod lever connecting bolt
14. Gear control rod
15. Gear control lever support
16. Engine flywheel protection plate
17. Front flexible coupling retaining nuts
18. Rear flexible coupling bolts
19. Bolts securing engine rear support to body shell
20. Engine rear support pin
21. Propeller shaft centre support retaining nuts
22. Propeller shaft centre support
23. Rear cross member retaining bolts
24. Rear cross member
25. Engine side support lower retaining nut
26. Engine side support
27. Engine side support upper retaining bolt
REMOVAL

1. Preliminary operations
 a. Place the vehicle over a garage lift and chock front wheels.
 b. Open bonnet and secure in open position with associated strut 1.

 WARNING:
 When the engine is hot, proceed with caution to avoid burns.

 b. Disconnect positive and negative terminals from the battery in the boot.
 c. Disconnect power supply cable 2 and earth cable 3 from the engine compartment light.
 d. Remove windscreen washer hose 4 from the electric pump on the reservoir.
 e. Support bonnet and remove screws 5 and associated shims which retain bonnet to hinges.
 f. Retrieve shims, which must be replaced in the same positions upon hood installation to ensure correct centralization.
 g. Remove hood and protect contact areas with suitable soft materials.

 For the following steps see the figure "View of the engine compartment."

 g. Disconnect brake vacuum servo line 1 from the one-way valve on the air intake box 2.

 2. Removal of air and fuel supply circuit
 a. Disconnect cable 3 from air flow sensor 4 and run it through the bracket 5.
 b. Disconnect the following lines, removing them from the side indicated:
 • Line 6, from the air intake box fitting.
 • Line 7, from tappet cover.
 • Line 8, from vacuum regulating valve 9 (Switzerland, Sweden, Australia versions only).
 • Line 10, from auxiliary air solenoid valve 11.
 • Corrugated sleeve 12, from throttle body.
 c. Unhook the retaining springs and remove the air filter cover 13 together with air flow sensor 4, corrugated sleeve 12 and the lines connected to it.
 d. Remove the filter element, loosen the screws and nuts retaining the air filter container and remove it from the vehicle.
 e. Disconnect the fuel supply lines, removing them from the side indicated:
 • Line 14, from the fitting on the manifold.
 • Line 15, from the pressure regulator.

 WARNING:
 • Proceed with caution: the supply system may be under pressure.
 • Keep tubing pointing upwards to prevent fuel escaping.
 Ensure also, that the workshop is correctly equipped to enable operations to be performed safely.

 3. Disconnect of electrical cables
 a. Disconnect cables 17, 18, 19 and 20 from the thermostat group 18.
 b. Release the above wiring harness from the support brackets fixed to the thermostat group and to the timing belt guard.
 c. Unscrew the two retaining screws and remove guard 21 from the air intake box 2.
 One of the two screws secures the relative grounding plait 22 to the air intake box.
 d. Disconnect the following electrical cables, removing them from the side indicated:
 • Cable 23, from the electro-injectors.
 • Cable 24, from the switch on the throttle.
 • Cable 25, from the electro-injector for cold starting.
 • Cable 26 and 27, from the auxiliary air solenoid valve.
 • Cable 28, from bulb on the cylinder block.
 • Cable 29, from terminal board 30 on the engine bulkhead.
 • Cable 31, from terminal board 32 on the engine bulkhead.
 • Cable 33, from the left head.
 • Cable 34 and 35, from the terminal board on the left wing.
 • Cable 36, from the coil.
 • Cable 37, from the distributor.
 • Cable 38, from the conditioner compressor electro-magnetic connection (if installed).
 • Cable 39, from the conditioner compressor (if installed).
 • Cable 40, from the respective mobile connections.
 • Cable 41, from the thermal switch on the lower side of the radiator.

 CAUTION:
 Detach the electric cables from any clamps, separate them from the propeller unit to prevent them obstructing the units removal.

 4. Cooling circuit disconnection
 a. Disconnect the following lines and sleeves, preferably removing them from the side indicated:
 • Sleeve 42, from the thermostat group.

 Place a suitable container under the vehicle to collect drained coolant.

 • Sleeve 43, from the thermostat group.
 • Line 44, from the radiator.
 • Sleeve 45, from the 3-way connector.
 • Line 46, from the thermostat group.
 • Line 47, from the connector on the left head.
b. Unscrew screw (48) securing radiator
49. Remove radiator together with the electric fans.

5. Conditioner compressor removal
a. Slacken nut (50) securing the chain stretcher pulley; slacken the belt driving the compressor and remove it.
b. Unscrew nut (51) and, from under the vehicle, the two screws securing the lower bracket to the block.
c. Move compressor (52) on the right side of the the vehicle and secure it in a suitable way.
d. If it is considered necessary, discharge the Freon and disconnect hoses (53) from the compressor.

6. Power steering circuit removal
a. Discharge, or suck, using a syringe, the oil fromreservoir (54).b. Disconnect lines (55), (56) and (57) from the power steering pump.

For the following steps see the figure «View of underbody».

7. Oil discharge (If required by the operations to be performed)
a. Raise the vehicle on the garage lift.
b. Unscrew plug (1) and drain engine oil.
Screw plug on again after the job has been completed.

8. Exhaust pipe removal
a. Unscrew nuts (2) retaining the front part of the exhaust pipe (3) to exhaust manifolds.
b. Remove the 3 bolts (4) fixing bracket (5) to the end of the flywheel cover.
c. Remove the 3 nuts (6) and separate the centre and rear sections of the exhaust pipe.
d. Remove the front and centre sections of the exhaust pipe and free from the rubber support rings (7).

9. Propeller shaft removal
a. Remove the 6 screws (8) and the propeller shaft guard (9).
b. Remove the centre cross member (10) and unscrew the 4 bolts (11) securing the body shell.
c. Take off boot (12), unscrew and remove bolt (13), disconnecting rod (14).
If it is considered necessary, unscrew the 4 screws retaining support (15) and move it to facilitate the removal of the propeller shaft.
d. Unscrew the bolts and remove flywheel guard (16).
e. With the gearbox in neutral, rotating the propeller shaft as necessary, alternately unscrew nuts (17) and bolts (18) connecting it, respectively, to the flywheel and clutch yoke.
f. Unscrew the 2 bolts (19) and disconnect engine rear support pin (20) from the body shell.
g. Unscrew the 2 nuts (21) and disconnect propeller shaft centre support (22) from the body shell.
h. Remove the 6 bolts (23) fixing the rear cross member (24) to the body shell.
i. Raise the rear axle using a column lift provided with cradle A.2.0075 and then extract propeller shaft from the clutch yoke.
j. Lower the column lift and remove the propeller shaft.

10. Final operations
a. Fit a suitable operating lever on the engine rear supporto to aid engine removal operations.
b. Unscrew and remove nuts (25) securing the lower part of side supports (26).
c. Lower the garage lift, unscrew and remove upper bolts (27) securing side supports (28).
d. Hook the engine on the lifting brackets, lift it out of the engine compartment with a hoist, positioning it with the operating lever.
ENGINE MAIN MECHANICAL UNIT

INSTALLATION
For the following operations refer to «Underbody» view of vehicle in question.

1. Preliminary operations
a. Fit the operating lever on the engine rear support.
b. Hook the engine on the appropriate lifting bracket, and using a hoist, drop it slowly into the engine compartment, positioning it as necessary with the operating lever.
c. Centre the engine in its compartment, resting it on the two side supports, and make sure that the screw and stud holes correspond on both supports.
d. Install and lock the bolts securing the flexible supports to the body shell on both sides of the engine.
e. Lift the vehicle, screw and lock, on both sides, nuts securing the lower part of the flexible supports to the body.
f. Remove the operating lever from the engine rear support.

2. Install of propeller shaft
a. Reinstall the complete propeller shaft unit on the vehicle by reversing the removal procedure and observing the following instructions.
 - Lubricate propeller shaft front bush and the rear coupling spherical seat with 5 cm³ (0.30 cu-in) of ISSECO MOLYKOTE BR2 grease.
 - Rotate the propeller shaft a little at a time, blocking it in a suitable way, and tightening the flexible couplings bolts and nuts to the prescribed torque.

3. Exhaust pipe installation
Connect exhaust pipe to tail pipe in the opposite order to that described in «Removal», step 8.
Fix the front part of the pipe to the relative manifolds.
Use new gaskets.

For the location of parts identified by reference numbers below see «View of engine compartment» for the vehicle in question.

4. Power steering circuit connection
a. Reconnect lines to the power steering pump.
The tightening torques are:

 ![Tightening torque](image)

<table>
<thead>
<tr>
<th>Nuts and bolts securing the propeller shaft flexible couplings to the engine flywheel and clutch fork</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 to 57 N·m (5.6 to 5.8 kg·m)</td>
</tr>
</tbody>
</table>

 Lock the nuts securing propeller shaft centre support to vehicle floor.

5. Installation of air conditioner compressor
a. Reconnect compressor lower bracket to engine block securing it from under the vehicle with the corresponding screws.
b. Refit compressor drive belt, and lock nut.
c. Restore correct tension to compressor drive belt and lock nut.

Load to be applied to belt centre:
P = 20 to 35 kg (44.1 to 77.2 lb)

Deflection:
F = 14 mm (0.55 in)

 d. If hose unions are disconnected, secure them to compressor.

6. Installation of radiator
Refit radiator together with electric fan, then reconnect cooling system tubing by reversing the order of the procedure described in «Removal» - step 4.

7. Electrical connections
Restore electrical connection, reversing the order of the procedure described in «Removal» - step 3.

8. Air and fuel supply system
Restore air and fuel supply system by reversing the procedure described in «Removal» - step 2.

9. Final operations
a. Reconnect servovibrate vacuum intake hose to single - acting valve on intake air box.
b. Refill and adjust the following:
 - Engine oil
 - Engine coolant
 - Power steering system oil level
 - Air conditioning system Freon
 - Timing check
 - Accelerator control cable adjustment
 - Adjustment of percentage of exhaust CO at idle
 - Electric fan action check on engine at normal running temperature.
c. Replace the hood (bonnet) by proceeding in the opposite order to that described in «Preliminary operations».

December 1985
01-88/14
PA346980000002
ENGINE DISASSEMBLY

PRELIMINARY OPERATIONS

a. Remove the engine group from the vehicle using the procedures described in the paragraph «Engine Removal and Installation» for the vehicle in question.

b. Prepare the engine assembly for installation on the rotating engine overhaul stand by placing it on the bench and lifting it by means of a suitable hoist (if possible a hydraulic type).

c. Removal of the exhaust manifolds and starting motor
 — From the right side of the engine remove the nuts with washers 1 and unscrew the three screws 2 retaining the exhaust manifolds to the right cylinder head.
 — Remove the exhaust manifolds 3 and heat shield 4 protecting the starting motor.
 — Slacken and remove nuts and washers 5 from screws 6 retaining the starting motor.
 — Remove the starting motor 7 with relative wiring 8 by sliding it out from the brackets 9 on the rear cover.
 — Proceed in a similar way for the removal of the exhaust manifolds from the left side of the engine.

d. Removal of rear cover
 — Unscrew the two upper screws 1 to recover the two brackets 2 supporting the starting motor wiring bundle.
 — Unscrew the remaining screws 3 and remove the rear cover 4.

e. Slacken and remove the washers and nuts 1 and remove the engine supports 2 on both sides of the engine block.

1. Upper screws
2. Wiring support brackets
3. Screws
4. Rear cover
6. Screws
7. Starting motor
8. Wiring
9. Brackets
f. Install the motor support brackets 1 and secure them to the engine block by means of the nuts with washers for fixing the engine supports.
g. Place the engine assembly on the overhaul stand 2 using a suitable hoist. Secure the engine support brackets 1 to supports 3 of the rotating engine overhaul stand by means of bolts 4.

h. Remove the engine oil dipstick; remove the drain plug of the lower sump and drain the engine oil (operation to be performed if the oil has not been discharged during the «Engine Removal»).

1. Engine support brackets
2. Rotary engine overhaul stand
3. Rotary stand supports
4. Bolts

1. Oil sump cover
2. Oil sump cover gasket
3. Oil sump
4. Oil sump gasket
5. Front cover gasket
6. Front cover
7. Front cover retaining screws
8. Front oil seal
9. Back up washer
10. Crankshaft drive pulley
11. Spacer
12. Lock washer
13. Crankshaft pulley locknut
14. Hydraulic belt stretcher
15. Belt stretcher locknut
16. Distributor and oil pump drive belt
17. Oil sump cover gasket
18. Pulley retaining screws
19. Camshaft drive belt
20. Left guard
21. Guard retaining screws
22. Right guard
23. Camshaft hub covers
24. Guard joining bolt
25. Spark plug cable clamps
26. Toothed pulley locknut
27. Toothed pulley hub
28. Hub retaining screws
29. Seal ring
30. Hub and toothed pulley support
31. Camshaft drive pulley
32. Camshaft drive key
33. Cylinder head gasket
34. Cylinder head cover gasket
35. Cylinder head cover
36. Plug gasket
37. Oil filler plug
38. Cylinder head cover screws
39. Nuts securing cylinder head to engine block
40. Rear bushing or bearing of crankshaft
41. Engine flywheel
42. Screws securing flywheel to crankshaft
43. Lock washer
44. Screws securing flywheel to clutch group
45. Oil sump retaining screws
46. Oil pump
47. Oil pump retaining screws
48. Oil drain plug

December 1985
01-88/16
REMOVAL OF FUEL SYSTEM COMPONENTS

1. Clamp
2. Clamp
3. Supplementary air pipe to the plenum chamber
4. Air feed pipe to the supplementary air solenoid valve
5. Screws
6. Supplementary air solenoid valve
7. Clamp
8. Oil vapour recirculation pipe
9. Oil vapour separator
10. Vacuum pipe for spark advance pneumatic regulator
11. Vacuum pipe for pressure regulator
12. Clamp
13. Corrugated sleeve

g. Slacken clamps 1 fixing the plenum chamber 2 to the rubber sleeves 3 of the intake manifolds.

h. Remove the plenum chamber 1 complete with throttle housing and rubber sleeves forming the connection with the intake manifolds.
i. Unscrew the screws 1 securing the electro-injectors to the air feed manifold (two for each injector) and to the petrol intake throat 2.

j. Remove the petrol intake throat 1 together with the electro-injectors.

NOTE:
For further disassembly and/or checks of the fuel supply system refer to Group 04 «FUEL SYSTEM» for Alfa 90, Alfa 75 and GTV - 6 cylinders.
ENGINE MAIN MECHANICAL UNIT

FUEL SYSTEM COMPONENTS (L-JETRONIC System)
ENGINE MAIN MECHANICAL UNIT

1. Corrugated sleeve
2. Throttle housing
3. Throttle housing locknuts
4. Gasket
5. Cold starting electro-injectors
6. Gasket
7. Plenum chamber
8. Cold starting electro-injector feed pipe
9. Fuel supply manifold
10. Fuel pressure regulator
11. Electro-injectors
12. Electro-injector flange
13. Screws securing electro-injectors to intake stub pipes
14. Sleeve connecting intake capacity to respective stub pipes
15. Vacuum take-off pipe for pressure regulator
16. By-pass pipe for idling adjustment
17. Intake stub pipes
18. Stub pipe lock nuts
19. Washer
20. Gaskets
21. Insulating gasket
22. Oil vapour separator
23. Oil recovery pipe
24. Oil vapour re-circulation pipe
25. Vacuum offtake pipe for pneumatic spark advance regulator
26. Supplementary air solenoid valve
27. Solenoid valve retaining screws
28. Pipe taking supplementary air to the plenum chamber
29. Pipe taking air to the supplementary air solenoid valve

REMOVING FUEL SYSTEM COMPONENTS

Alfa 90 2.0 6V iniezione

a. Slacken the two nuts with washers securing the left air collector box to the cylinder heads.

b. Remove the left air box by extracting it from the three rubber sleeves.

c. Disconnect the six small tubes connected to the idling air fittings of the respective cylinders from the idling air block on the right air collector box.

d. Slacken the two nuts with washers securing the right collector box to the cylinder head. Remove the right box complete with idling air block, extracting it from the three sleeves connecting it to the throttle housing. Remove the six rubber sleeves.

1. Small air intake tubes connecting the idling air block to the cylinder air fittings
2. Left air box
3. Rubber sleeves
4. Nuts and washers
5. Left air box
6. Right collector box
7. Idling block
8. Rubber sleeves

PA346980000002
01-88/21
December 1985
e. Slacken the six clamps securing the distribution tube to the electro-injectors.

1. Clamps
2. Distribution tube
3. Electro-injectors

f. Remove the distribution tube extracting it from the feed tube sof the electro-injectors.

1. Distribution tube
2. Electro-injector feed tubes

g. Slacken and remove the twelve socket screws securing the three throttle housings (front-centre-rear) to the respective lower intake stub pipes.

1. Socket screws (twelve)
2. Throttle housings

h. Remove the throttle assembly by raising the respective lower intake stub pipes and release the earthing plait connected to the left cylinder head.

1. Throttle assembly (front-centre-rear)
2. Lower intake stub pipes

1. Lower intake stub pipes (right side)
2. Electro-injectors (right side)
3. Constant idling actuator
4. Front - throttle housing
5. Centre - throttle housing
6. Rear - throttle housing
7. Throttle angle sensor
8. Screws securing throttle housing to the lower intake stub pipes
9. Idling air offtake pipe (six, one for each cylinder)
10. Rubber sleeves
11. Right box (plenum chamber)
12. Idling air block
13. Petrol distributor pipe
14. Left box (plenum chamber)
15. Box locknuts
16. Clamp fixing electro-injectors to distribution pipe
17. Electro-injectors (left side)
18. Lower intake stub pipes (left side)
19. Intake stub pipe locknut

December 1985
01-88/22

PA3469B0000002
ENGINE MAIN MECHANICAL UNIT

i. Slacken the two nuts (two for each stub pipe) securing the lower intake stub pipe to the cylinder head. Remove stub pipe complete with electro-injector and minimum air tube; proceed in the same way for the removal of the remaining stub pipes.

NOTE:
For further disassembly and/or checking of the fuel supply system refer to Group 04 -FUEL SYSTEM- for the Alfa 90 2.0 - 6V iniezione.

1. Nuts and washers
2. Lower intake stub pipe
3. Electro-injector
4. Idling air intake tube

1. Generator
2. Drive belt
 (generator and water pump)
3. Regulation bracket
4. Bracket retaining screws
5. Generator support
6. Support and water pump retaining screws
7. Water pump complete with thermostat group
8. Water pump gasket
9. Bracket fixing compressor to oil sump
10. Bracket retaining screws
11. Belt stretcher
12. Belt stretcher locknut
13. Belt stretcher pulley hub
14. Belt stretcher fixing pin
15. Compressor support
16. Screws fixing support to bracket
17. Pin fixing support to cylinder block
18. Air conditioner compressor
19. Compressor retaining screw
20. Drive belt
21. Engine oil filter
22. Exhaust manifold (right side)
23. Gasket
24. Distributor
25. Shields
26. Retaining springs
27. Retaining bracket
28. Locknut
29. High voltage wires complete with suppressors
30. Spark plug
31. Starting motor shield
32. Starting motor
33. Gasket
34. Screws fixing starting motor
35. Starting motor rear support
36. Support retaining screws
37. Rear cover
38. Rear cover retaining screws
39. Flywheel lower guard
40. Guard retaining screws
41. Engine oil dipstick
42. Engine side support
43. Support locknut
44. Rubber shock absorber
45. Shock absorber locknut
46. Exhaust manifold (left side)
47. Exhaust manifold locknut
48. Power steering pump rear bracket
49. Screw fixing pump to bracket
50. Nut fixing pump to generator
51. Power steering pump
52. Drive belt
53. Bracket fixing pump to engine block
54. Bracket retaining screw
55. Power steering pump retaining screws
56. Lower screw fixing generator

December 1985
01-88/24
PA346980000002
REMOVAL OF ACCESSORIES

a. Removal of power steering pump
 — Slacken screw 1 securing the power steering, screws 2 determining the tension of the V-belt and the bolt securing the rear bracket 6.
 — Move the power steering pump 3 towards the cylinder head and remove the V-belt 4 from the crankshaft pulley.
 — Unscrew completely screws 1 and 2 and the rear bracket bolt (already slackened) and remove the power steering pump 3 complete with support bracket 5.

b. Removal of the generator
 — Slacken nuts 1 and 2 and nut 3 which determine the tension of the V-belt.

c. Removal of the conditioning system compressor
 — Slacken nut 1 securing the belt stretcher 2.
 — Slip off the V-belt 3 from the compressor pulley and from the crankshaft pulley (to facilitate this turn the crankshaft).
 — Slacken and then completely unscrew the screws fixing the support brackets 4 of the compressor to the oil sump.
 — Slacken and unscrew bolt 5 and remove the compressor 6.

 — Move the generator 1 towards the engine block and remove the V-belt 2 from the crankshaft and water pump pulleys.
 — Remove the generator 1 together with the adjustment bracket 3 after having unscrewed bolts 4 and 5 completely.

 1. Generator
 2. V-belt
 3. Adjustment bracket
 4. Retaining bolt
 5. Retaining bolt
 6. Compressor of conditioning system

d. Removal of distributor cap
 — Disconnect suppressors 1 from spark plugs 2.
 — Free springs 3 securing the distributor cap.
 — Remove cap 4 from the distributor complete with the high voltage wires 5 after removing them from the respective cable clamps 6 located above the distributor belt guard.
 — Remove spark plugs 2.

 1. Nut
 2. Belt stretcher
 3. V-belt
 4. Support bracket
 5. Bolt
 6. Compressor of conditioning system
e. Removal of timing belt guard
 — Remove covers 1 from the toothed timing belt guard.

f. Removal of distributor
 — Release and remove the nut securing the connecting plate 1.
 — Remove connecting plate 1.
 — Extract distributor 2.

1. Suppressor
2. Spark plugs
3. Spring
4. Distributor cap
5. High voltage cables
6. Cable clamp

1. Guard joining bolt
2. Right guard
3. Left guard

1. Connecting plate
2. Distributor

g. Removal of hydraulic belt stretcher and timing belt
 — Stop the hydraulic belt stretcher from rotating (of the distributor belt, raise the arm of the belt stretcher 1 and use tool A.2.0363 to lock the belt stretcher. To insert tool A.2.0363 seating hole 2 must coincide with that on the belt stretcher body.
ENGINE MAIN MECHANICAL UNIT

- Slacken nuts (1) and (2) securing the body of belt stretcher (3) to the engine block.

- Slip off and remove timing belt (1) from the toothed pulleys installed on the cylinder heads and slide out from the crankshaft front pulley.

- Removal of thermostat group
 - Unscrew the three screws with washers (1) fixing the cover of the thermostat group.
 - Remove cover (2) complete with thermostat valve.

1. Toothed timing belt

1. Screws with washers
2. Cover with thermostat valve

- Rotate the hydraulic belt stretcher (1) upward and lock it in this position by tightening nut (2), previously slackened.

- Unscrew the two screws fixing the belt stretcher body to the cylinder block. Remove the hydraulic belt stretcher (1) together with the spring and plate (2) holding the belt stretcher spring (3).

- Open metal clamps (1) holding the rubber sleeves (2) to the cooling ducts of each cylinder head.

1. Hydraulic belt stretcher
2. Plate
3. Belt stretcher spring

1. Hydraulic belt stretcher
2. Locknut
3. Belt stretcher spring

1. Metal clamps
2. Rubber sleeves

December 1985
01-88/28
ENGINE MAIN MECHANICAL UNIT

— Remove housing 1 of the thermostat group by sliding it out from the cooling ducts of each cylinder head.

b. Remove the valve cover 1 and relative gasket under it.

1. Thermostat group housing

NOTE:
For the disassembly and/or checking of the setting of the thermostat valve refer to Group 07 «COOLING SYSTEM» for Alfa 90, Alfa 75 and GTV - 6 cylinders.

1. Valve cover

1. Intermediate gear
e. Slacken and remove nuts with washers 1 (eight for each head) securing the cylinder heads to the block. Remove cylinder heads 2, paying particular attention not to damage the studs of the engine block while lifting the heads.

NOTE:
Perform the above mentioned operations on both cylinder heads.

c. Remove packings 1 from the six spark plug wells.

1. Rubber packing
d. Extract intermediate gear 1 operating the distributor and oil pump from the right cylinder head.

1. Screws with washers
2. Valve cover

1. Nuts with washers
2. Cylinder heads

REMVAL OF THE CYLINDER HEADS

a. Slacken and remove screws with washers 1 securing the valve cover 2 to the cylinder head.
Remove the following from the engine block:

1. Cylinder head gasket;
2. Flameproof rings (fitted on each cylinder liner);
3. O-ring for lubrication pipe
4. Cylinder head gasket
5. Flameproof rings
6. O-ring
7. Lubrication pipe
8. Gudgeon pin
9. Lock ring
10. Connecting rod
11. Bushing
12. Upper main half-bearings (four)
13. Rear thrust half rings (two)
14. Upper and lower rod half-bearings (twelve)
15. Seal ring (rear)
16. Crankshaft
17. Key for crankshaft pulley
18. Lower main half-bearings (four)
19. Rear main bearing cap
20. Grommets
21. Main bearing caps (three)
22. Connecting rod caps (six)
23. Special screw for fixing con rod caps (twelve)
24. Plugs
25. Plug for cooling system
26. Pin for hydraulic belt stretcher

December 1985
REMOVAL OF COMPONENTS FROM ENGINE BLOCK

a. Insert cylinder liner locking tool A.2.0117 with the respective complementary washers (A.2.0362), in the engine block studs as shown in the figure. Lock tools A.2.0117 with the nuts and washers ① used to fix the cylinder head.

b. Slacken and remove all the screws with washers ① fixing the water pump to the engine block. Remove support ② which secures the generator adjustment bracket.

c. Remove water pump ① and put the gasket ② aside.

d. Remove engine oil filter ① by unscrewing it from the engine block using a suitable spanner ② (belt or chain type).

e. Free the overhaul stand and turn the engine assembly 180°. Fit a suitable tool ① to the flywheel to permit the rotation of the crankshaft and lock it by means of the self-locking nuts ②. Unscrew all the screws and washers ③ holding the oil sump to the engine block.

f. Remove the oil sump ① complete and the relative gasket ②. If necessary, remove traces of sealant on the oil sump or engine block.

NOTE:
For the inspection and/or testing of the water pump refer to Group 07 «COOLING SYSTEM» for Alfa 90, Alfa 75 and GTV - 6 cylinders.
g. Unscrew the three socket screws 1 securing sump 2 to the engine block.

h. Extract oil pump 1 from the engine block (pull it upwards and save the seal ring).

i. Free the engine overhaul stand and turn the engine assembly 180°. Fit tool A.2.0145 to lock the rotation of the flywheel. Ensure, before locking it with screws 1, that the tooth is perfectly aligned with those of the toothed crown of the flywheel.

j. Removal of crankshaft front pulley
Working on the front side remove the crankshaft pulley.
Proceed as follows:
- Eliminate the calking from the collar of the nut securing the pulley.
- Using a torque spanner 1 with adequate extension slacken and unscrew the nut fixing the pulley.

k. Unscrew screw with washer 1 and remove the plate 2 securing hydraulic belt stretcher spring 3.
l. Slacken and remove screws with washers 1 securing the front cover.
 Remove front cover 2 and retrieve the gasket under it 3.
 Extract seal ring 4 from the front cover.

m. Removal of piston liners, pistons and connecting rods
 — Remove tool A.2.0145 which prevents the rotation of the engine flywheel.
 Turn the crankshaft so as to make screws 1 securing the con rod caps to the con rods accessible.
 Slacken and remove screws 1, using a torque spanner 2, which secure the con rod caps 3.
 — Free the overhaul stand and turn the engine 180°.
 Unscrew nut with washer 1 and remove the liner locking tool A.2.0117 and respective washer A.2.0362.
 Extract all the con rod-piston groups 2 complete with con rod upper half-bearings and together with the cylinder liners 3.
 Remove seal ring 4 from each cylinder liner.

1. Screws securing con rod caps
2. Torque spanner
3. Con rod caps

— Remove con rod caps 1 complete with respective lower half-bearings 2.
 Proceed in the same way for the remaining con rod caps.

1. Nut with washer
2. Con rod-piston group
3. Cylinder liner
4. Seal ring

1. Con rod caps
2. Con rod lower half-bearings
n. Tilt the cylinder block slightly and fit tool A.2.0145 again.
Lock with screws 1.
Remove the tool from the engine flywheel to permit the rotation of the crankshaft.
Unscrew screws 2 securing the flywheel to the crankshaft (the screws securing the flywheel are sealed on mounting with LOC- TITE 270 (green) cement P/N 3524-00009).
Remove screws 2 and lock washers 3.

p. Extract the flywheel center bushing from the rear flange of crankshaft 1: the bushing should be extracted with extracting tool A.3.0210.

q. Removal of crankshaft
1. Remove the three front main bearing caps as follows:
 - Remove lock nuts 1 using a suitable spanner.

r. Remove tool A.2.0145 and remove flywheel 1.

1. Engine flywheel

1. Nuts and washers fixing the front main bearing caps
 - Remove the three front main bearing caps 1, using a suitable extracting tool 2 if necessary.

2. Remove the rear main bearing cap as follows:
 - Straighten the safety tabs which secure the nuts of the rear main bearing cap.
 - Slacken and remove the nuts with the respective tabs.
 - Remove the rear main bearing cap 1 using the extraction tool composed of lever A.3.0139/0001 and fork A.3.0139/0002.
 - Retrieve the grommets 2 on the sides of the rear main bearing cap.
ENGINE MAIN MECHANICAL UNIT

1. Rear main bearing cap
2. Grommets

3. Remove the seal ring 1 from the rear flange of the crankshaft.

4. Extract the two rear thrust half-rings 1 and turn the crankshaft to facilitate its extraction.

 Remove the crankshaft 2 from the cylinder block.

5. Remove the upper main half-bearings 1 located in their respective seats on the main bearings.

 Mark the reciprocal position of the half-bearings 1 in case they are re-utilized when re-assembling.
ENGINE MAIN MECHANICAL UNIT

CYLINDER HEAD

\[T \leq 16 \text{ to } 18 \text{ Nm} \]
\[(1.6 \text{ to } 1.8 \text{ kgm}) \]
\[11.57 \text{ to } 13.02 \text{ ft-lb}) \]
DISASSEMBLY OF THE CYLINDER HEAD ON BENCH

The disassembly operation described here is for the right cylinder head. To disassemble the left cylinder head proceed in the same way.

PRELIMINARY OPERATIONS

a. Lock revolving support (tool A.2.0195) in a vice, fit the fork to support the cylinder head (tool A.2.0960) and fix it to the revolving support.

b. Place cylinder head (1) on the fork and fix it with two lock nuts of the cylinder head (removed previously).

c. Remove engine lifting bracket (2).

REMOVAL OF INTAKE STUB PIPES

(Only for vehicles with L-JETRONIC Injection)

a. Slacken and remove nuts with washers (1) securing the intake stub pipes (2) to the cylinder head.

b. Remove the intake stub pipes (1) and then remove, in order, the following parts: gasket (2), insulating gasket (3) and gasket (4).

1. Cylinder head
2. Engine lifting bracket
3. Insulating gasket
4. Gasket
REMOVAL OF THE CAMSHAFT PULLEY

Remove the toothed pulley driving the camshaft in the following way:

a. Unscrew nut (1).

Use the lever (tool A.2.0361) to prevent toothed pulley (2) from rotating.

b. Slacken and unscrew screws (1) fixing the support hub (2) to the toothed pulley (3).

c. Free the support hub, which is interference-fitted, using the puller (tool A.3.0521) and lever (tool A.2.0361).

REMOVAL OF DISTRIBUTOR AND OIL PUMP DRIVE PULLEY

a. Raise the safety tab of nut (1) securing the gear.

b. Slacken nut (1) (use lever - tool A.2.0361 to maintain it).

c. Unscrew and remove nut (1) with relative washer (2).

d. Slide out toothed pulley (3) complete with drive shaft (4) secured by screw with washer (5).

At the same time retrieve gear (6) and relative spacer (7) from the lower part of the cylinder head.
e. Remove the oil ring 1 from under the cylinder head.

REMOVAL OF CAMSHAFT

a. Slacken and remove nuts with washers 1 securing the caps 2 of the camshaft.

b. Remove caps. The camshaft caps are numbered progressively (1-2-3 etc.). Cap 1 is located on the front part of the cylinder head. When reassembling fit the caps in the same order.

c. Remove camshaft 1 by raising the rear part first and then sliding it out in the direction indicated by the arrows in the figure.

REMOVAL OF ROCKER ARM SHAFT AND VALVES

Disassemble the rocker arm support shaft as follows:

a. Remove tappets 1 from their seats in the cylinder head.

b. Slide out push rods 2 operating rocker arms 3 of the exhaust valves.
c. Slacken and unscrew plug 1 sealing the rocker arm support shaft.

--- rocker arms 2.
--- spring 3.

g. Disassemble the valves in the following way and using the following tools:
--- Insert tool A.2.0192 to support the valves by passing it under the spark plug well and lock it with special nut (tool A.2.0359). Screw support (tool A.3.0522) to the threaded shank of tool A.2.0359.

1. Plug

--- Screw a suitable tool 2 to the threaded shank of the rocker arm support shaft 1.

1. Washer
2. Rocker arms
3. Spring

f. Slide out tappets 1 located on the intake valves, complete with cap nut 2 which determines valve clearance. Remove in sequence so that they can be replaced in the same order.

1. Rocker arm support shaft
2. Tool for removing shaft

--- Gradually extract the rocker arm shaft and retrieve, one at a time, the following parts:
--- washer 1.

1. Intake valve tappets
2. Valve clearance adjustment cap nut

--- Fit the cage for the removal and refitting of the coppers (tool A.3.0520) to the lever (tool A.3.0324) and fit the group to the tools already mounted, as shown in the figure.
— Disassemble each pair of valves (in-take and exhaust) and move the tool group each time. Press the lever (tool A.3.0324) to overcome the resistance of the valve springs and remove cotters ① (for this operation use a small screwdriver). Then disassemble in the following order: upper cap ②, outer spring ③ and inner spring ④.

— Unscrew special nut (tool A.2.0359) complete with support (tool A.3.0522) from valve support (tool A.2.0192).

— Withdraw pair of valves (exhaust valve ① and intake valve ②) from the respective guides. Repeat the operations described for the remaining pairs of valves.
h. Removal of rubber oil seals and lower caps from the valves

- Using tool A.3.0247 remove rubber oil seals 1 from the guides of the intake and exhaust valves.
- Remove lower caps 2 from both intake and exhaust valves, complete with spring seat rings 3.

1. Rubber oil seals
2. Lower caps
3. Spring seat rings
CHECKING AND TESTING THE CYLINDER HEADS

CHECKING AND TESTING CYLINDER HEAD AND VALVES

a. Examine visually and with care, the casting and all the parts making up the cylinder head to check for cracks, burns, seizing or signs of excessive wear.
b. If this inspection should indicate the possibility of re-utilizing one or more parts check, according to the instructions given and after thorough cleaning of the head, the dimensions of the same.

1. Straight edge
2. Thickness gauge

Maximum flatness error of the lower surface of the cylinder head:

\[A = 0.05 \text{ mm (0.002 in)} \]

c. If the lower surface of the cylinder head should prove to be excessively deformed it must be levelled. Levelling must be performed on both heads.

CHECKING CYLINDER HEAD BUSHINGS

a. Measure the diameter of the following bushings mounted on the cylinder head:

- "A", bushing for the distributor and oil pump drive gear;
- "B", bushing for the distributor and oil pump drive pulley shaft;
- "C", bushings for the shaft of the toothed pulley driving the camshaft.

NOTE:
Bushings "A" and "B" are not mounted on the left cylinder head.

CHECKING CYLINDER HEAD FLATNESS

a. Thoroughly clean the surfaces of the cylinder head to remove any gasket fragments. Use butyl acetate or methyl ethyl ketone.
b. The checking of the flatness of the lower surface of the cylinder head must be performed by means of a straight edge placed on the lower surface of the head; the extent of deformation should be measured with a suitable thickness gauge.

A. Distance between camshaft axis and lower surface of cylinder head

Min. permitted height of cylinder head after regrinding:

\[A = 124.5 \text{ mm (4.902 in)} \]

CAUTION:
Do not exceed the minimum limit permitted as this can cause serious engine malfunctions.

d. Check that the lower surface of the head is well-finished.
— fit the most suitable bore gauge ➊ to the stem of the dial indicator;
— zero-set the dial indicator at the dimension established on the micrometer and then measure diameter ➋ of the bushings measured on 120° of the circumference.

<table>
<thead>
<tr>
<th>Bushing</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Bushing</td>
<td>19.000 to 19.021</td>
<td>19.000 to 19.021</td>
<td>32.000 to 32.025</td>
</tr>
<tr>
<td>B. Bowl (A.3.0528)</td>
<td>0.7480 to 0.7488</td>
<td>0.7480 to 0.7488</td>
<td>1.2598 to 1.2608</td>
</tr>
</tbody>
</table>

A. Bushing
2. Bowl (A.3.0528)
5. Special bushing (A.3.0528)

— Proceeding in the same way as described above, withdraw the two bushings ➋ of the toothed pulley support shaft operating the camshaft. Use flange ➌ as a pusher, together with cup ➍.

Removal of bushings

Bushings ➋ of the gear operating the oil pump and the distributor should be withdrawn using special washer ➌ as a pusher, and using bowl ➋ as a support (which will accompany the bushing as it is extracted).

— Extract bushing ➋ for the shaft of the pulley operating the oil pump and the distributor using, in addition to cup ➋ a special washer ➌ as a pusher.
B. Bushing
2. Cup (A.3.0528)
5. Special washer (A.3.0528)

e. Installation of the bushings

Bushings «C» made of antifriction metal, for the shaft of the pulley operating the camshaft, must be inserted in the following way.

- Temporarily fit cap 9 of the camshaft and lock it with nuts 10.
- Place the rear bushing «C», recognizable because it is thinner, so that it is sufficiently centered in its seat.
- Place, as illustrated in the figure, tool A.3.0528 comprising spool 1 which acts as a pusher, and spool 8.

C. Bushing
1. Spool (A.3.0528)
8. Spool (A.3.0528)
9. Cap
10. Nuts

- Insert bushing «B» for the shaft of the toothed pulley operating the oil pump and the distributor using spool 1 as a pusher and flange 4 as a support.

- To insert the front bushing «C» proceed in the same way but use spool 1 in inverted position as illustrated in the following figure so as to obtain the correct position of the bushing.
B. Bushing
1. Spool (A3.0528)
4. Flange (A3.0528)

Insert, from the upper side of the distributor seat, bushing «A» for the distributor and oil pump drive gear.
Place tool A3.0528 in the following way: insert tie rod (3) complete with nut (6) and special nut (5) (as pusher); from the opposite side insert support spool (1) in the tie rod and complete the insertion of the bushing «A» in this way.

A. Bushing
1. Spool (A3.0528)
3. Tie rod (A3.0528)
5. Special washer (A3.0528)

f. Reaming bushings «A» and «B»
After inserting the two bushings «A» and «B» for the distributor and oil pump drive mechanism, they must be reamed to the prescribed dimensions.
— Bushing «A»: insert tool A4.0195 and then, using a suitable reamer (1) [19 mm H7 (0.7480 to 0.7489 in)] bore as prescribed.

A. Bushing
1. Reamer [19 mm H7 (0.7480 to 0.7489 in)]

Diameter after reaming:
bushing for distributor and oil pump drive gear shaft:
19.000 to 19.021 mm
(0.7480 to 0.7489 in)

— Bushing «B»: insert guide tool A4.0195 and then, using a suitable reamer (1) [19 mm H7 (0.7480 to 0.7489 in)] bore as prescribed.
CHECKING VALVE SEATS

a. Check that the valve seats do not exhibit scoring, cracking or burning and that they are well-fitted in their respective seats on the cylinder head - if necessary replace them.

b. Withdraw the valve seats (1) using a suitable tool as illustrated in the figure. Proceed as follows:
 - Fit and lock stop ring (3) and screw tap (4) (selected according to the diameter of the valve seat to be extracted) on mandrel (2).
 - Insert the group thus formed in the valve guide until screw tap (4) comes into contact with the valve seat (1).
 - Thread the valve seat by means of a no. 22 mm spanner on the head of the mandrel until ring (3) touches the surface of the valve seat - then unscrew a half turn;
 - Tap the extremity of the mandrel protruding from the head to extract the valve seat.

c. Use a micrometer (1) to measure the diameter of the new valve seat (2) and a bore meter (3) to measure that of the respective seat in the cylinder head to check the correct fitting interference. Compare the values obtained with those given in the table.
d. Pre-heat the cylinder head in a suitable oven to 120°C (274°F).
e. Insert the valve seat (of intake and exhaust valves) using the tool used for the removal in the following way:
 — fit and lock stop ring (2) selected according to the diameter of the valve seat to be fitted on mandrel (1);
 — insert the group thus formed into the valve guide until stop ring (2) comes into contact with the valve seat;
 — tap the extremity of mandrel (1) protruding from the head, to insert the valve seat.

If necessary remove the worn valve guides (1) using extracting tool A.3.0134 as illustrated in the figure.

CHECKING VALVE GUIDES

Determine the clearance between valve guide and the stem.
If the clearance exceeds the permitted tolerance replace the worn parts.
a. Determination of clearance
 — Using a micrometer measure the diameter of the valve stem in three places and in directions at right angles to each other.
 — Using a bore gauge (1) measure the I.D. of the valve guide (d).

Valve guide I.D. (intake and exhaust):
 d = 9.000 to 9.015 mm
 (0.3543 to 0.3549 in)

 Calculate the clearance, subtracting the maximum diameter of the valve stem from the I.D. of the valve guide.

 Radial clearance between valve stem and valve guide I.D.:
 Intake: 0.013 to 0.043 mm
 (0.0005 to 0.0017 in)
 Exhaust: 0.040 to 0.080 mm
 (0.0016 to 0.0031 in)

b. Replacing the valve guide
 — Visually check the valve guides, ensuring that there is no scoring or traces of seizing and that they have not undergone deformation or moved from mounting position.

Valve guide seat I.D.:
 13.990 to 14.018 mm
 (0.5508 to 0.5519 in)

Valve guide O.D.:
 14.033 to 14.044 mm
 (0.5525 to 0.5529 in)

Interference between valve guide and seat of valve guide:
 0.015 to 0.054 mm
 (0.0006 to 0.0021 in)

December 1985
01-88/50
PA3469B0000002
Insert the new valve guides using tool A.3.0526 for the intake valve guides and tool A.3.0527 for the exhaust valve guides.

These tools ensure the correct protrusion of the valve guides with respect to the support surface of the lower spring cap on the cylinder head.

Protrusion of the valve guides from the cylinder head:
S = 10.2 to 10.6 mm
(0.402 to 0.417 in)

d. Reaming the valve guides
 Ream intake and exhaust valve guides 1 using a 9 mm H7 (0.3543 to 0.3549 in) reamer 2 to calibrate the holes to the prescribed diameter and then measure the I.D. of the valve guides.

I.D. of the intake and exhaust valve guides:
9.000 to 9.015 mm
(0.3543 to 0.3549 in)

e. Turning the valve seats
 Wait until the cylinder head is cooled and perform the turning of the valve seats in the following way.
 Position support 1 of the portable lathe 2 on the cylinder head and secure it in a suitable way.
 The angle of turning, which is identical for both intake and exhaust, should be:

Taper of intake and exhaust valve seats:
α = 90°

 Taper α is obtained with the tool of the portable lathe at 45° (for both intake and exhaust valves).

CHECKING THE VALVES
Check that the valves are not scored or burnt or do not exhibit mating marks (steps) with the corresponding seats on the cylinder head.
Renew them if necessary.
a. If the valves are in good condition check the diameters of the stem and heads (which must be within the tolerances given in the table).
GRINDING OF THE VALVES AND VALVE SEATS

a. After checking the valves and valve guides grind as follows:
 — spread polishing paste (SIPAL AREXONS Carbolicium for valves - P/N 4100-31502);
 — use engine oil to lubricate the valve stem;
 — attach the lower surface of the head of the valve to the suction cup of the pneumatic grinder (1);
 — insert the valve in its guide, turn on the pneumatic grinder (1) and grind.

<table>
<thead>
<tr>
<th>Diameter of valve stem [mm (in)]</th>
<th>Reference</th>
<th>Engine 062.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake valve</td>
<td>A</td>
<td>8.972 to 8.987 (0.3532 to 0.3538)</td>
</tr>
<tr>
<td>Exhaust valve</td>
<td>B</td>
<td>8.940 to 8.955 (0.3520 to 0.3526)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter of valve head [mm (in)]</th>
<th>Reference</th>
<th>Engine 062.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake valve</td>
<td>C</td>
<td>36.350 to 36.500 (1.4311 to 1.4370)</td>
</tr>
<tr>
<td>Exhaust valve</td>
<td>D</td>
<td>32.450 to 32.500 (1.2776 to 1.2835)</td>
</tr>
</tbody>
</table>

The flexibility values, measured by means of a dynamometer (1) must be within the limits given in the table.

<table>
<thead>
<tr>
<th>External spring</th>
<th>mm</th>
<th>Test force</th>
</tr>
</thead>
<tbody>
<tr>
<td>With valve closed</td>
<td>32.5 (1.280)</td>
<td>24.80 to 25.66 kg (243.2 to 251.6 N) (54.6 to 56.5 lb)</td>
</tr>
<tr>
<td>With valve open</td>
<td>23.5 (0.925)</td>
<td>47.95 to 49.75 kg (470.2 to 487.8 N) (105.7 to 109.7 lb)</td>
</tr>
</tbody>
</table>

CHECKING VALVE SPRINGS

a. Carefully examine the valve springs and, if there are no signs of excessive wear or yielding, check that:
 — the terminal turns must be parallel and perpendicular to the axis of the spring (max. error 2°);
 — the length of the «free» springs corresponds to the following values:

<table>
<thead>
<tr>
<th>External spring</th>
<th>mm</th>
<th>Test force</th>
</tr>
</thead>
<tbody>
<tr>
<td>With valve closed</td>
<td>30.5 (1.201)</td>
<td>12.82 to 13.28 kg (125.7 to 130.2 N) (28.3 to 29.3 lb)</td>
</tr>
<tr>
<td>With valve open</td>
<td>21.5 (0.846)</td>
<td>22.67 to 23.53 kg (222.3 to 230.7 N) (50.0 to 51.9 lb)</td>
</tr>
</tbody>
</table>
CHECKING TAPPETS AND TAPPET SEATS
a. Check that the external surface of the tappets and the upper surface on which the cams operate are free from any trace of seizing, scoring or abnormal wear. If they can be re-utilized check the dimensions.
 — Using a micrometer check the outside diameters are within the prescribed limits.

\[
A = \text{intake tappet diameter:} \\
34.973 \text{ to } 34.989 \text{ mm} \\
(1.3769 \text{ to } 1.3775 \text{ in}) \\
B = \text{exhaust tappet diameter:} \\
21.971 \text{ to } 21.989 \text{ mm} \\
(0.8650 \text{ to } 0.8657 \text{ in})
\]

— Check the tappet seats formed in the cylinder head casting and check the dimensions with a bore gauge applied to a dial indicator. Compare the value obtained for the tappet seat of the intake valve with the prescribed tolerance.

\[
A = \text{intake valve tappet seat diameter:} \\
35.000 \text{ to } 35.025 \text{ mm} \\
(1.3780 \text{ to } 1.3789 \text{ in})
\]

— In the same way as described previously measure the value for the exhaust valve tappet seat and compare it with that prescribed.

\[
B = \text{exhaust valve tappet seat diameter:} \\
22.000 \text{ to } 22.021 \text{ mm} \\
(0.8661 \text{ to } 0.8670 \text{ in})
\]

— Measure the O.D. of the rocker arm shaft with a micrometer and compare the values with those prescribed.

1. Rocker arm shaft
2. Micrometer

\[
B = \text{rocker arm shaft diameter:} \\
15.988 \text{ to } 16.000 \text{ mm} \\
(0.6294 \text{ to } 0.6299 \text{ in})
\]

CHECKING ROCKERS AND ROCKERS ARM SHAFT
— Use bore gauge 1 to measure the I.D. of the rocker arms 2 and check that they are within the prescribed tolerances.

CHECKING CAMSHAFTS AND JOURNAL BEARINGS
a. Check the dimensions of the camshaft journal bearings in the following way:
 — Fit caps 1 in the order indicated by the numbers stamped on the caps themselves - cap no. 1 must be fitted towards the front of the cylinder head.
 — Screw nuts 2 fixing the caps of the camshaft, lubricate them and tighten to the torque prescribed.

1. Bore gauge
2. Rocker arms

T: Torque wrench setting
Camshaft cap lock nuts
16 to 18 N·m
(1.6 to 1.8 kg·m
11.57 to 13.02 ft·lb

PA346980000002
01-88/53
December 1985
Check, using a bore gauge applied to a dial indicator the diameter of the camshaft journal bearings and compare the values measured with those prescribed.

A = diameter of camshaft main journals:
26.949 to 26.970 mm
(1.0610 to 1.0618 in)

Check the eccentricity of the camshaft main journals between two supports by means of a dial indicator.
Measure the height of the cams with a dial indicator.
If the cam height is less than the prescribed value replace the shaft.

Minimum cam height [mm (in)]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake valve cam</td>
<td>9</td>
<td>0.354</td>
</tr>
<tr>
<td>Exhaust valve cam</td>
<td>6.4</td>
<td>0.252</td>
</tr>
</tbody>
</table>

Checking End Float of Camshaft

a. Fit the caps, noting the sequence indicated by the numbers stamped on the caps themselves.
Cap no. 1 must be fitted towards the front part of the cylinder head.
b. Screw on the nuts securing the camshaft caps, lubricate them and tighten.

G = camshaft end float:
0.065 to 0.200 mm
(0.0026 to 0.0079 in)

Torque wrench setting
Camshaft cap lock nuts
16 to 18 N-m
(1.6 to 1.8 kg-m
11.57 to 13.02 ft-lb)

Place plate 1 on the upper surface of the cylinder head.
Apply magnetic base 2 to the plate and place the sensor of dial indicator so that it is in contact with the camshaft as illustrated in the figure.
Move the camshaft axially and measure the end play; check that the value is within the limits prescribed.
If not the camshaft must be replaced.
INSTALLATION OF VALVES AND ROCKERS ARM SHAFTS

CAUTION:
The re-fitting of the valves is performed by using the same set of tools used for removal.
It is therefore necessary to reinstall the pair of valves (intake and exhaust) of each cylinder by moving the tool group each time.

a. Insert the lower caps 1 and stop washers 2 on the guides of the intake and exhaust valves.

b. Fit rubber oil seals 1 on the guides of the intake and exhaust valves using tool A.3.0244.

c. Lubricate the stem of the valve with clean engine oil, insert valves 1 into the respective guides and support them with tool A.2.0192 which, in turn, must be fixed to the spark plug well by means of special nut A.2.0359, complete with support for valve fitting, tool A.3.0522.

d. Complete fitting by inserting the following in the sequence given, on the valve stem:
 - inner springs 1;
 - outer springs 2;
 - upper caps 3.

NOTE:
The damping coils of the springs must be facing downwards.
Using lever A.3.0324 compress the spring and insert cotters 1.
During fitting ensure that the cotters are correctly seated in the channel in the valve stem.

b. Re-fitting of rocker arms and rocker arm shaft
Perform the following operations to re-fit the shaft and rocker arms which operate the exhaust valves:
- screw on a suitable tool 1 to the threaded shank of the rocker arm shaft 2.
- insert the shaft, suitably lubricated with engine oil, in the seat in the cylinder head and, on this, in sequence: springs 3, rocker arms 4 and washers 5 previously lubricated with engine oil.

c. Checking tightness of valves and valve seats
Insert the spark plugs in their seats.
Put a little petrol in a combustion chamber so that the valve head being examined is just covered.
Introduce low pressure air into the intake and exhaust ducts and check that there are no air bubbles in the petrol.
If there is leakage ensure that the valves are perfectly seated and repeat the tightness test.
If the result is negative the grinding of the valve seats must be repeated as specified in the paragraph «CHECKING VALVES AND VALVE SEATS».

d. After fitting all the valves mount the caps 1 which determine the clearances on the intake valves.
The positions should be the same as those before removal.
Lubricate tappets 2 with clean engine oil and insert them in their respective seats.
ENGINE MAIN MECHANICAL UNIT

1. Tool
2. Stud holes
3. 12 mm (0.472 in) dia. pin

--- Remove the tool from the rocker arm shaft and re-screw plug 1 with relative gasket.

--- After completing the re-fitting of the rocker arms rotate the shaft using tool 1 until the notches on the shaft are aligned with holes 2 in order to permit the passage of the cylinder head support studs; to check that this is so use a 12 mm (0.472 in) dia. pin 3.

--- Re-fitting of push rods and exhaust valve tappets
Lubricate tappets 1 with engine oil and insert them in their respective seats in the cylinder head.
Reinstall push rods 2 (after lubricating them) taking care to:
- rotate rocker arm 3 forwards and downwards to facilitate fitting;
- position the ball head of the rod in the seat provided in the tappet.

--- Installation of Camshaft
a. Using clean engine oil lubricate the journals of camshaft 1 and the respective seats on the cylinder head on which the shaft must be placed (as shown by the arrows).

b. Position caps 1 in sequence according to the numbers (no. 1 should be fitted on the front of the cylinder head); place and tighten the nuts with respective washers 2 in oil to the required torque.

T: Torque setting
Camshaft cap stop nuts (in oil)
16 to 18 N-m
(1.6 to 1.8 kg-m
11.57 to 13.02 ft-lb)
ENGINE MAIN MECHANICAL UNIT

VALVE CLEARANCE ADJUSTMENT

a. Checking the intake valve clearance
After re-fitting the camshaft check the intake valve clearance in the following way:
— temporarily fit hub 1 which serves to fix the toothed pulley operating the timing system;
— rotate, using lever A.2.0361, the camshaft until it is possible to fit thickness gauge C.5.0197 on the cam of the valve of which the clearance is to be measured (cams in rest position facing upwards);
— note the values for each valve and compare them with those prescribed.

\[G = \text{clearance between lowest radius of the cam and the crown of the tappet operating the intake valve:} \]
\[0.475 \text{ to } 0.500 \text{ mm (0.018) to 0.0197 in)} \]

b. Adjustment of Intake valve clearance
If necessary adjust valve clearance as follows:
— Remove the caps fixing the camshaft and the camshaft itself;
— withdraw the tappets and retrieve caps 1 underneath;
— measure the thickness of the caps using specific gauge C.1.0108 and then, on the basis of the difference with respect to the values obtained previously, select from the set of caps (R.9.0001) those which will restore the correct clearance of each valve.

Reinstall tappets, camshaft and caps. Tighten the nuts on camshaft caps to the prescribed torque and check valve clearance again.

c. Checking and adjustment of exhaust valve clearance
Adjust the exhaust valve clearance to restore the clearance between the crown of the tappet and the lowered radius of the cam.

For the adjustment use special spanner (tool A.5.0220) as follows:
— temporarily install hub 1 which serves to fit toothed pulley operating the timing system;
— rotate, using lever A.2.0361, the camshaft until it is possible to fit thickness gauge C.6.0197 on the cam of the valve of which the clearance is to be measured (cams in rest position facing the opposite side of the tappet);
— note the values measured for each valve and compare them with those prescribed;
— slacken lock nut 2 securing adjustment screw 3 using the lever of the spanner (tool A.5.0220) combined 3 and 11 mm (0.12 and 0.43 in) spanner;
— rotate screw 3 using spanner A.5.0220 until the prescribed value is obtained (determine by means of a blade-type thickness gauge C.6.0197);
— tighten lock nut 2 and check the exhaust valve clearance again.
ENGINE MAIN MECHANICAL UNIT

a. Lubricate the sealing lip A of seal ring 1 with the prescribed grease and the outer surface B with clean engine oil. Then insert ring using tool A.3.0525.

Lock the gear with the relative nut 3 complete with washer having a safety tab: prevent the rotation of the pulley using the lever of tool A.2.0361. After tightening the nut bend the safety tab over.

b. Insert operating shaft 1 in its seat and insert spacing washer 2 from the other side.

d. Tighten the screw with washer fixing pulley 1 to its shaft. Prevent the rotation of the pulley with lever (tool A.2.0361) and then lock the screw using a torque spanner.

1. Hub
2. Lock nut
3. Adjustment nut

G = clearance between lowered radius of the cam and crown of the tappet operating the exhaust valve: 0.225 to 0.250 mm (0.0089 to 0.0098 in)

INSTALLATION OF DISTRIBUTOR AND OIL PUMP DRIVE PULLEY

Re-fit the toothed pulley which operates, together with the relative gear, the distributor and oil pump.

c. Fit toothed pulley 1 on the drive shaft and then fit gear 2 operating the distributor and the oil pump.
INSTALLATION OF CAMSHAFT DRIVE PULLEY

a. Remove the hub of the toothed pulley, mounted temporarily, and refill the seal ring of the camshaft (after having lubricated the outer surface B with engine oil and sealing lip A with the prescribed grease). Seal ring 1 must be fitted using insertion tool A.3.0525.

b. Lubricate surface A of the anti-friction bushings using clean engine oil. Fit toothed pulley 1 on the shank of the camshaft; re-fit pulley support 2 and hub 3 complete with rubber ring 4 and tighten screws 5 fixing it to the pulley.

c. Tighten the nut fixing the toothed pulley 1 to the camshaft; prevent the rotation of the pulley with the lever (tool A.2.0361) and tighten the nut to the prescribed torque. Also fully tighten screws 5 fixing the hub to the pulley.

<table>
<thead>
<tr>
<th>Torque setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nut securing front hub of camshaft</td>
</tr>
<tr>
<td>97 to 117 N·m</td>
</tr>
<tr>
<td>(9.9 to 11.9 kg-m)</td>
</tr>
<tr>
<td>71.5 to 86.1 ft·lb</td>
</tr>
</tbody>
</table>

1. Intake stub pipes
2. Gasket
3. Insulating gasket
4. Gasket

REMOVAL OF CYLINDER HEAD FROM THE BENCH

After the re-assembly of the cylinder head remove the head 1 from the support yoke (tool A.2.0360) after removing the two lock nuts. Remove the support yoke complete with adjustable support (tool A.2.0195) from the vice.

INSTALLATION OF INTAKE STUB PIPES

a. Only for vehicles with L-JETRONIC fuel system

Install the intake stub pipes 1 as follows:
- Insert gasket 2 in the studs of the cylinder head;
- Insert insulating gasket 3;
- Insert gasket 4;
- Fix intake stub pipes 1 to the studs of the cylinder head by means of the nuts with relative washers.
CHECKING THE ENGINE BLOCK

a. Check the block visually for cracks and signs of excessive wear of the sliding surfaces.
b. Carefully clean the surfaces of the block to remove any gasket fragments. Use butyl acetate or Methyl ethyl ketone.

CRANKSHAFT

a. Check that the working area of the main and rod journals do not exhibit signs of abnormal wear, scoring or traces of seizing or overheating.

--- WARNING: The chrome-molybdenum steel crankshaft has been subjected to a nitriding treatment and thus cannot be ground. For this reason the crankshaft must be replaced if it exhibits signs of excessive wear.

b. Place the crankshaft on the bench between supports and measure the diameter of main journals "A" and rod journals "B" and compare them with the prescribed values.

--- WARNING: The range of tolerances permitted for the machining of the main and rod journals has been divided into two classes. It is possible to identify the class of the journal being checked as the respective counterweights have indelible RED or BLUE marks.

<table>
<thead>
<tr>
<th>Class</th>
<th>RED [mm (in)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of main journal A</td>
<td>59.961 to 59.971</td>
</tr>
<tr>
<td></td>
<td>(2.3607 to 2.3611)</td>
</tr>
<tr>
<td>Diameter of main journal for oversized crankshaft A</td>
<td>59.971 to 59.981</td>
</tr>
<tr>
<td></td>
<td>(2.3611 to 2.3615)</td>
</tr>
<tr>
<td>Diameter of rod journal B</td>
<td>51.990 to 52.000</td>
</tr>
<tr>
<td></td>
<td>(2.0433 to 2.0472)</td>
</tr>
</tbody>
</table>

Maximum main or rod journal taper error:

A-B = 0.010 mm (0.0004 in)

Check the concentricity (Ø) between the centre main journals and front and rear main journals.

Maximum eccentricity of main journals:

0.040 mm (0.0016 in)

Check the parallelism (∥) between the centerlines of the main and rod journals.

Maximum parallelism error between main and rod journals:

0.015 mm (0.0006 in)

c. Also check the following:

- Check the ovalization (Ø) of the rod journals and main journals by comparing the diameter at various points of their circumference.

A- Main journals
B- Rod journals

Maximum main or rod journal ovalization error:

A-B = 0.004 mm (0.0002 in)

Check the taper (Ø) of the main and rod journals by comparing the diameter at the ends of the journal.
Check the length of the rear main journal (which must be within the prescribed values).

Maximum length of the rear main journal:

\[C = 31.300 \text{ to } 31.335 \text{ mm} (1.2232 \text{ to } 1.2237 \text{ in}) \]

- Clean the oil passages with a steel wire pipe brush.
- Wash the shaft and oil passages with hot solvent and dry with compressed air (paying particular attention to the oil passages).
- Apply sealant (LOCTITE 270 Green) to the new plugs \(1\) and seal the holes in the oil passages with new plugs (using a suitable tool \(2\)).

If, after these checks, the shaft can be re-utilized, proceed with the cleaning of the drilled oil passages:

- Use a punch \(1\) to make a hole in plugs \(2\) sealing the extremities of the oil passages.
- Extract plugs and eliminate any burrs created by the previous caulk.

Main and Connecting Rod Half-Bearings

- **a.** Clean the main and con rod half-bearings and check visually for signs of scoring or seizing.
- **b.** If there are signs of excessive wear replace all the half-bearings.
- **c.** The fitting of main and rod half-bearings to the crankshaft must be performed by pairing pieces of the same dimensional class, identifiable by a mark of the same colour **RED** or **BLUE** on the side of the half-bearing and on the relative journal of the crankshaft.
- **d.** Using a micrometer measure the width of the half-bearings \(1\) and compare the values with those given in the table; replace the half-bearings if their values are not within the prescribed tolerances.

Table: Half-bearings [mm (in)]

<table>
<thead>
<tr>
<th>Class</th>
<th>Main</th>
<th>Rod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1.829 to 1.835 (0.0720 to 0.0722)</td>
<td>1.737 to 1.745 (0.0684 to 0.0687)</td>
</tr>
<tr>
<td>Blue</td>
<td>1.835 to 1.841 (0.0722 to 0.0725)</td>
<td>1.741 to 1.749 (0.0685 to 0.0689)</td>
</tr>
<tr>
<td>Green</td>
<td>1.845 to 1.851 (0.0726 to 0.0729)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

(1) Only to be used on a non-oversized crankshaft if the end play between journal and half-bearing is greater than 0.050 mm (0.0020 in) after checking the dimensions of each individual journal.

1. **Main and rod half-bearings**

1. Punch
2. Plugs
3. Crankshaft

1. Plugs
2. Crankshaft

December 1985

01-88/62

PA346980000002
MAIN BEARINGS AND MAIN BEARING CAPS

a. Fit the main bearing caps 1 on the main bearings, positioning them according to the numbering on them (cap no. 1 must be fitted on the front part of the main bearings).
b. Tighten in oil the nuts, with respective washers 2) securing the main bearing caps, to the required torque.

T: Torque setting

Nuts securing the main bearing caps to the cylinder block supports

76 to 78 N-m
(7.8 to 8 kg-m
56.4 to 57.9 ft-lb)

d. Check the length of the shoulder of the rear main bearing.

Length of the shoulder of the rear main bearing:
26.450 to 26.500 mm
(1.0413 to 1.0433 in)

THRUST RINGS

a. Check the thickness of the thrust rings (fitted on the rear main bearing).
The value must be within the prescribed tolerances.

Thrust ring thickness:
2.310 to 2.360 mm
(0.0909 to 0.0929 in)

CYLINDER LINERS

a. Determine the class of the cylinder liners and then check the dimensions.
The liners are divided, on the basis of their I.D., into three classes - A, B and C and are identifiable by indelible spots of paint - BLUE, PINK and GREEN - on the outside of each cylinder liner.
ENGINE MAIN MECHANICAL UNIT

Maximum taper of the liner:
A-B = 0.01 mm (0.0004 in)

Maximum ovalization of the liner:
X-Y = 0.01 mm (0.0004 in)

Cylinder liner diameter [mm (in)]

<table>
<thead>
<tr>
<th>Class</th>
<th>Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>062.10</td>
</tr>
<tr>
<td>A</td>
<td>79.985 to 79.994</td>
</tr>
<tr>
<td></td>
<td>(3.1490 to 3.1494)</td>
</tr>
<tr>
<td>B</td>
<td>79.995 to 80.004</td>
</tr>
<tr>
<td></td>
<td>(3.1494 to 3.1498)</td>
</tr>
<tr>
<td>C</td>
<td>80.005 to 80.014</td>
</tr>
<tr>
<td></td>
<td>(3.1498 to 3.1502)</td>
</tr>
</tbody>
</table>

DISASSEMBLY OF CONNECTING ROD-PISTON ASSEMBLY

Before making measurements divide the con rod-piston assembly as follows:

a. Using a suitable screwdriver extract the two snap rings securing the pin holding the con rod to the piston.

PISTONS AND GUDGEON PINS

The pistons and gudgeon pins are paired when fitting according to the dimensional class (established by the different machining tolerances).

It is possible to identify the class by the paint marks WHITE or BLACK, inside the gudgeon pin and on the outside of the piston boss.

a. Using a micrometer, measure the O.D. of the gudgeon pin and, using a bore gauge, measure the diameter of the hole for the connection to piston.

b. Ensure that the values are within the tolerances given for the various dimensional classes in the table.

c. Check that the seats of the gudgeon pin in the connecting rod small end and in the piston bosses are not excessively worn.

d. Carefully examine the piston before measuring for deep scoring of the skirt or the grooves of the rings, which would require replacing.
The pistons, like the cylinder liners, are divided into three classes according to the machining tolerances. In this case too the classes are called A, B and C and identified by indelible paint marks (BLUE, PINK and GREEN) on the piston top.

e. Check the O.D. of piston 1 with a micrometer.

The O.D. must be measured perpendicular to the gudgeon pin hole at a distance of 12 mm (0.47 in) from the lower edge of the skirt.

f. Compare the value measured with the prescribed tolerances, according to the class, in the table.

```
1. Cylinder liners

<table>
<thead>
<tr>
<th>Piston ring gap (A) [mm (in)]</th>
<th>Engine 062.10</th>
<th>Engine 016.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>First ring</td>
<td>0.30 to 0.50 (0.012 to 0.020)</td>
<td>0.30 to 0.45 (0.012 to 0.018)</td>
</tr>
<tr>
<td>Second ring</td>
<td>0.30 to 0.50 (0.012 to 0.020)</td>
<td>0.30 to 0.45 (0.012 to 0.018)</td>
</tr>
<tr>
<td>Oil control ring</td>
<td>0.25 to 0.50 (0.010 to 0.020)</td>
<td>0.25 to 0.40 (0.010 to 0.016)</td>
</tr>
</tbody>
</table>
```

i. Lubricate the piston rings with clean engine oil and reinstall them in their respective seats on the piston 1, taking care to insert, in sequence:

- spring 2 and oil control ring 3 in the third groove, bearing in mind that the spring joint must be at 180° with respect to the cut of the ring;
- compression rings 4 and 5 in the second and first groove respectively.

Position the rings so that the word "TOP" stamped on the rings is facing upwards.

g. Measure the thickness of compression rings 1 and 2 and that of oil control ring 3; check that the values measured are within the tolerances given in the table.

<table>
<thead>
<tr>
<th>Piston diameter [mm (in)]</th>
<th>Engine 062.10</th>
<th>Engine 016.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (Blue)</td>
<td>79.945 to 79.955</td>
<td>87.935 to 87.945</td>
</tr>
<tr>
<td></td>
<td>(3.1474 to 3.1478)</td>
<td>(3.4620 to 3.4624)</td>
</tr>
<tr>
<td>B (Pink)</td>
<td>79.955 to 79.965</td>
<td>87.945 to 87.955</td>
</tr>
<tr>
<td></td>
<td>(3.1478 to 3.1482)</td>
<td>(3.4624 to 3.4628)</td>
</tr>
<tr>
<td>C (Green)</td>
<td>79.965 to 79.975</td>
<td>87.965 to 87.965</td>
</tr>
<tr>
<td></td>
<td>(3.1482 to 3.1486)</td>
<td>(3.4628 to 3.4632)</td>
</tr>
</tbody>
</table>

h. Insert the piston rings in the cylinder liner 1 and check gap A using a feeler gauge.
ENGINE MAIN MECHANICAL UNIT

1. Piston
2. Spring
3. Oil control ring
4. Second compression ring
5. First compression ring

j. Measure the clearance between piston grooves and rings using a feeler gauge.

k. Examine the gudgeon pins in order to pair them with pistons marked with paint of the same colour (White or Black). The mark is located on the external surface of the boss and on the inside of the gudgeon pin.

l. If the parts are to be re-utilized bear in mind that the working areas, in particular the seat of the gudgeon pin in the piston should be free from even the slightest scoring.

m. Insert the gudgeon pin in each piston (selected according to the class - Black and White); lock with the snap rings and, using a balance similar to the one illustrated check that the difference between the weights of the pistons is no greater than 4 grams (0.14 oz).

A-B = 4 grams (0.14 oz) (max)

CONNECTING RODS AND CONNECTING ROD CAPS

a. Check the con rods visually for cracks, scoring and signs of excessive wear. The con rods and con rod caps which can be re-utilized must be checked for the correct dimensions as follows.

b. Using a bore gauge 1 fitted to a dial indicator 2 measure the diameter of the bushing in the con rod small end 3.
c. Fit the con rod caps, tightening the respective screws in oil to the prescribed torque. Check the diameter of the con rod small end as described in point b.

1. Torque setting
 Screws retaining con rod caps (in oil)
 46 to 51 N-m
 (4.7 to 5.2 kg·m
 34 to 37.6 ft·lb)

 A-B = 2 grams (0.07 oz) (max)
 C. area to be machined to
 D. obtained the exact weight

 e. Check the perpendicularity of connecting rods 1 using a jig similar to the one illustrated.

1. Bore gauge
2. Dial indicator
3. Connecting rod

Connecting rod I.D.:
55.511 to 55.524 mm
(2.1855 to 2.1860 in)

d. Using a balance similar to the one illustrated, check that the difference between the weights of the two con rods (complete with caps, half-bearings and screws) is no greater than 2 grams (0.07 oz). To restore the exact weight remove the excess metal from parts «C» and «D».

REASSEMBLY OF THE CONNECTING ROD-PISTON ASSEMBLY

Reassemble the assembly formed by the connecting rod and the piston considering that:

a. If the previously disassembled pistons and con rods are to be re-utilized the initial pairing (i.e. piston no. 1 with con rod no. 1) must be restored.

b. The connecting rods for the right side of the engine which match pistons no. 1, 2, 3, must be fitted with the offset towards the rear of the engine while those for the left side which match pistons no. 4, 5 and 6, must be fitted with offset towards the front.

c. Remember that the arrow stamped on the top of the piston should face toward the front of the engine.

A: the notch to which the arrow points indicates the offset side «d».

d. The piston and the gudgeon pin must belong to the same dimensional class (this can be seen from the White or Black paint marks on the piston boss and inside the gudgeon pin).

e. The gudgeon pin 1 should enter the piston 2 easily with the pressure of the thumb alone.

1. Connecting rods

WARNING:
If the connecting rod is not true it must be replaced to avoid abnormal stress during engine running and consequent irregular wear of the piston and the con rod itself.
f. After mounting the snap rings retaining the gudgeon pin the piston should move freely but be quite precise; to check this position the assembly as in the figure and ensure that the piston, as a result of its own weight, passes slowly from position «A» to position «B».

Clearance between con rod small end bushing hole and gudgeon pin:

- **Black**: 0.008 to 0.021 mm (0.0003 to 0.0008 in)
- **White**: 0.005 to 0.018 mm (0.0002 to 0.0007 in)

Clearance between piston hole and gudgeon pin:

- **Engine 062.10**: 0.003 to 0.008 mm (0.0001 to 0.0003 in)
- **Engine 016.46**: 0.006 to 0.012 mm (0.0002 to 0.0005 in)
REPLACING FLYWHEEL RING GEAR
Check the flywheel ring gear and, when necessary, replace it as follows:
a. Heat the flywheel in a suitable oven, until the prescribed temperature is reached.
b. Remove the flywheel from the oven and, using a suitable mallet, separate the ring gear from the flywheel.
c. Heat the new ring gear uniformly up to the required temperature and then mount it on the engine flywheel, taking care that it is positioned correctly.

Temperature to which the ring gear should be heated for fitting/removing on/from the engine flywheel: 120 to 140°C (248 to 284°F)

c. Carefully clean the contact surface of the oil sump and its cover, fit a new gasket 1 covered with the prescribed sealant on both sides.
d. Replace cover 2 on oil sump 3, screw all the screws (with washers) and oil drain plug.

REPLACING OIL SUMP COVER
If necessary it is possible to replace the oil sump cover in the following way:
a. Slacken and unscrew screws with washers 1 which fix cover 2 to the oil sump.
b. Remove the gasket bearing in mind that it was spread with sealant during assembly.

1. Gasket
2. Cover
3. Oil sump
CRANKSHAFT
Mount the crankshaft on the block in the following way:

a. Select the main half-bearings pairing them with the relative shaft journals (according to the dimensional class).
b. The assembly on the crankshaft must be performed by pairing parts of the same dimensional class, identified by paint marks of the same colour Red or Blue, on the side of semi-bearing ① and on crankshaft journal ②.

c. Clean the main bearings, lubricate them with clean engine oil and then position the upper main half-bearings ①, taking care that, during fitting, that the safety notches are in their respective seats in the cylinder block.

d. Lubricate the main bearings and crankshaft journals again with clean engine oil and place the shaft ①, correctly positioned, on the main bearings.

e. Insert thrust half-rings ① and settle them by rotating the crankshaft.

CAUTION:
The half-rings must be fitted ensuring that the lubrication grooves are facing towards the shoulders of the crankshaft.

MAIN BEARING CAPS
a. Place the lower main half-bearings ① in the respective main bearing caps ② after lubricating them with clean engine oil; check that the safety notches are correctly positioned.
b. Re-fit caps 1 on the first three main bearings. They must be oriented so that the safety notches coincide with those of the cylinder block; their position and orientation should be according to the numbers stamped on them (cap no. 1 should be fitted on the front bearing).

c. Re-fit rear main bearing cap 2, taking care not to damage the rubber seals 3.
Lubricate rubber seals 3 using lubricant 50HB-5100 or MILLOIL (Norm. 4500-17502).

d. Tighten, in oil, nuts with washers 1 fixing main bearing caps 2.
Use the prescribed torque setting.
The nuts fixing the rear main bearing cap 3 are provided with safety tabs 4 which, temporarily must not be removed.

e. Checking the crankshaft end float
— Apply a dial indicator 1 with magnetic base so that the sensor of the instrument is in contact with the crankshaft parallel to the shaft axis.
— Using a screwdriver 2 move the crankshaft 3 and use the dial indicator to check that the end float is within the prescribed limits.
— Compare the value with that prescribed and, if necessary replace the thrust half-rings.
— To replace them it is necessary to remove the rear main bearing cap again.

f. After fitting the new half-rings check the crankshaft end float and, if it is within the prescribed tolerance, bend the safety tabs 1 of nuts 2 of the rear main bearing cap 3.

End float of crankshaft:
0.080 to 0.265 mm
(0.0031 to 0.0104 in)

g. Screw locknuts 5 on the remaining front main bearing caps 4.
h. Tighten locknuts 1 of the front main bearing caps 2 to the prescribed torque.

OIL SEAL (REAR)

a. Lubricate the outer surface and the lip of the rear oil seal with clean engine oil.

b. Contain the internal spring of the rear oil ring by applying a thin layer of ISECO Molykote BR2 grease (P/N 3671-69841).

c. Place the oil seal on the flared surfaces of the centering ring of tool A.3.0178. Fit the oil seal using tool A.3.0178; ensure that it is in the correct position during mounting.

ENGINE FLYWHEEL

- Fitting of flywheel center bushing
 - Mount bushing 1 on the rear flange of the driving shaft 2 using inserting tool A.3.0305.

1. Locknuts
2. Front main bearing caps

Torque setting
Locknuts securing main bearing caps (in oil)
20 to 25 N-m (2 to 2.5 kg-m)
14.5 to 18.1 ft-lb

A.3.0178

A.3.0305

1. Flywheel center bushing
2. Crankshaft rear flange

b. Fit the engine flywheel in the following way:
 - Clean the crankshaft flange and the contact surface of the flywheel carefully;
 - Rest the flywheel 1 on the flange. The flywheel can only be mounted in one position due to the fact that the mounting holes are not equidistant; position safety washer 2 in the same way;
 - Finger tighten screws 3 securing the flywheel (after spreading the prescribed sealant over them).

CAUTION:
Before applying the sealant to the threads of the screws (LOCTITE 270 - Green) eliminate any trace of the old sealant by brushing and blowing air over the threads. In any case remove any grease from the threads with trichloroethylene or chlorothene.
CYLINDER LINERS, PISTONS AND CONNECTING RODS

a. Clean the cylinder liners carefully and fit seal. Then insert the liners in the block, ensuring that they go all the way.

Torque setting:

Screws securing flywheel to crankshaft

- 113 N·m
- 11.5 kg·m
- 83.2 ft·lb

b. Checking the protrusion of the cylinder liners

If it is necessary to check the protrusion of the cylinder liners with the seal rings fitted proceed as follows:

- Fix the cylinder liners to the block by means of cylinder liner fixing tool A.2.0117 (complete with additional rings A.2.0362).
- Secure the liner fixing tools and tighten the respective nuts to the prescribed torque.

1. Tool for turning crankshaft
Apply gauge tool C.6.0148 to the cylinder block so that the sensors of the dial indicators rest on the edge of the cylinder liner 1 indicating the protrusion.

Check that the values obtained are within the prescribed tolerances.

1. Upper half-bearings
2. Lower half-bearings
3. Connecting rod cap

Using clean engine oil, lubricate the piston and position the respective piston rings so that the cuts (openings) are staggered as in the figure.

1. Guide [I.D. 88 mm (3.465 in)]] for the insertion of the pistons in the cylinder liners

Lubricate the con rod caps and respective crankshaft journals with clean engine oil.
Free the cylinder block from the rotating stand and turn it over.
Bring con rod 1 to the respective journal of the crankshaft and fit con rod cap 2 so that it matches the notches of the half-bearings.

Protrusion of cylinder liner from cylinder block:
0.01 to 0.06 mm (0.0004 to 0.0024 in)

— Remove the liner fixing tools, A.2.0117 complete with additional washers, A.2.0362.

Fitting pistons and connecting rods
Fit the previously selected half-bearings on the connecting rod big end and on the respective caps. Proceed as follows:
— Position the half-bearings 1 and 2 in the con rod big end and in cap 3 respectively, after having lubricating them with clean engine oil.

P1. Position of first compression ring
P2. Position of second compression ring
P3. Position of oil control ring
aa. Gudgeon pin axis
dd. Direction of thrust

Insert the con rod-piston group in the respective liner, ensuring that the arrow stamped on the top of the piston is facing towards the front of the engine; a suitable guide tool 1 must be used for insertion.

CAUTION:
To avoid scoring the cylinder liners the con rod must be guided during the insertion of the piston.

— Fix the cylinder liners with suitable tools A.2.0117 complete with additional washers A.2.0362.

1. Connecting rod
2. Connecting rod cap
ENGINE MAIN MECHANICAL UNIT

- Insert screws 1 securing the con rod caps 2 and tighten them to the prescribed torque (after lubricating them with engine oil).

1. Retaining screws
2. Connecting rod caps

\[T \] Torque setting
Retaining screws of con rod caps
(in oil)
46 to 51 N-m
(4.7 to 5.2 kg-m
34.0 to 37.6 ft-lb)

c. Stop the flywheel from rotating by means of tool A.2.0145.
d. Mount ring 1 on the crankshaft.
This serves as a shoulder for the timing mechanism toothed belt; the crown of the ring must face inwards.

CRANKSHAFT FRONT PULLEY
Re-fit crankshaft seal ring 1 on the front cover.
a. Lubricate the outer surface of the seal ring 1 with clean engine oil and the respective lip with ISECO Molykote BR2 grease (P/N 3671-69941).
b. Drive the seal ring 1 onto the crankshaft using tool A.3.0524.

e. Mount the timing mechanism drive toothed pulley 1 on the crankshaft.

FRONT COVER
Free the overhaul stand and turn the cylinder block over (restoring it to normal position).
a. Before fitting the front cover clean the cylinder block support surfaces and the cover itself to remove any fragments of gasket.
Use butyl acetate or methyl ethyl ketone.
b. Insert the gasket over the studs.
c. Fit the cover 1 and screw and lock retaining screws 2.
d. Mount plate 3, for the pre-loading spring of the hydraulic belt stretcher, on the front cover and fix it by means of screw with washer 4.

f. Mount the front pulley 1 fitting it into respective slot with the key on the crankshaft.
OIL PUMP Disassembly

a. Maintain the oil pump in a vice and disassemble the pressure regulation group:
 - remove the cotter pin 1,
 - extract, in sequence: cover 2, spring 3, and piston 4.

b. Separate the oil suction housing 2 from the pump housing 3 after removing screws 1.

g. Fit washer 1 onto the crankshaft and finger tighten the locknut 2.

h. Tighten the nut securing the front pulley 1 (in oil) to the required torque; use a suitable tool 2 to tighten the nut.

Torque setting:
Nut securing crankshaft front pulley (in oil)
235 N·m
(24 kg·m
174 ft·lb)

i. Caulk the collar of nut 1 after tightening to the prescribed torque.
CHECKING

Check the rotors visually for deep scoring or evidence of seizure; check the piston of the valve regulating the oil pressure in the same way.

a. Using a micrometer measure the O.D. of the driven rotor (1) and, using a bore gauge, measure the I.D. of the pump housing (2).

Ensure that the values obtained are within the prescribed tolerances.

b. Use a dynamometer (1) to check the flexibility of the spring (2) operating the oil pressure regulation valve; see table for prescribed values.

RE-ASSEMBLY

a. Re-assemble the oil pump as follows:
 - Insert driven rotor (1) in the pump housing (4) and then insert the inner rotor (2) complete with spindle (3).

<table>
<thead>
<tr>
<th>Test load</th>
<th>17.31 to 17.97 kg (38.2 to 39.6 lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of free</td>
<td>A 49.29 mm (1.941 in)</td>
</tr>
<tr>
<td>spring</td>
<td></td>
</tr>
<tr>
<td>Length of</td>
<td>B 31.90 mm (1.256 in)</td>
</tr>
<tr>
<td>loaded spring</td>
<td></td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

- **G** = Clearance between driven rotor and inner rotor of the oil pump:
 0.040 to 0.290 mm
 (0.0016 to 0.0114 in)

- Check the end float of the two rotors with respect to the pump housing surface; this is done with a thickness gauge placed between the rotors themselves and the test roller resting on the surface.

1. Driven rotor
2. Inner rotor
3. Spindle
4. Pump housing

- Position the rotors as indicated in the figure and measure the clearance that exists between the lobe of the inner rotor and that of the driven rotor. Compare the clearance with that prescribed.

- **G** = End float between the two rotors with respect to the pump housing surface:
 0.025 to 0.075 mm
 (0.0010 to 0.0030 in)

Re-fitting the oil pump to the block

a. Insert the oil drive shaft in its seat in the cylinder block.

b. Fix the oil pump to the base using the three socket head screws.

- Re-assemble the oil movement group complete with suction rose on the pump housing and secure with screws and washers.
- Re-assemble the valve regulating the oil pressure by reinstalling: piston, spring and cover.
- Overcome, with the aid of a pair of long-nosed pliers, the force of the valve spring and insert safety cotter.

1. Oil movement group
2. Pump housing
3. Screws and washers
4. Piston
5. Spring
6. Cover
7. Safety cotter

1. Oil pump
2. Retaining screws

PA3469B00000002

01-88/79

December 1985
REINSTALLATION OF CYLINDER HEADS

a. Free the overhaul stand and turn the block over.
Remove tool A.2.0145 preventing the rotation of the flywheel.
b. Turn the crankshaft until the piston of cylinder no. 1 is in T.D.C. position during explosion stroke; this position is assured by the collimation of the notch on the engine pulley 1 and mark 2 on the front cover.

c. Remove the cylinder liner fixing tools A.2.0117 and additional washers A.2.0362, insert the fireproof gasket 1 on the cylinder liners 2.

d. Insert gasket 1 of the cylinder head and position seal ring 2 of the lubrication oil pipes.

e. Prepare, as described, the two cylinder heads for re-fitting on the block:
 — with lever (tool A.2.0361), turn camshaft 1 of each head until the timing notches (ref. A) coincide with the timing notches of the specified fixing caps 2.
 On the RIGHT head the notch corresponds with the third cap, while on the LEFT head it is on the second cap.

f. Fit the cylinder heads 1 to the block and lubricate the threads of the studs, the washers and locknuts with clean engine oil; proceed with care so as not to damage the studs.

g. Screw and tighten (to the required torque) the eight locknuts of the cylinder heads according to the sequence indicated in the following figure.

NOTE:
The operation illustrated is that for the RIGHT head.
For the LEFT head the tightening order is symmetrical.
ENGINE MAIN MECHANICAL UNIT

Torque setting

Nuts securing cylinder head to block
- 76 N·m
- (8 kg·m)
- 57.9 ft·lb

CAUTION:

After about 1000 km, with a cold engine, slacken the nuts by 1 turn one at a time in the order indicated.

Moisten the surfaces between washer and nut with oil and re-tighten to the following torque:
- 88 N·m
- (9 kg·m)
- (65.1 ft·lb)

REINSTALLING OF ACCESSORIES

WATER PUMP

d. Mount intermediate union [3] (fitting a new gasket [4]) and simultaneously connecting rubber sleeves with clamps to the cylinder head cooling pipes.

Fit plate [3] for the thermostat group wiring harness on the thermostat cup.

f. Finally connect rubber sleeves [1] to the cylinder head cooling pipes. Tighten clamps [2].

FIGURES

- [Image: Diagram of water pump installation]
- [Image: Diagram of thermostat installation]

1. Water pump
2. Gasket
3. Support
4. Screws with washers

1. Cup
2. Thermostat
3. Gasket
4. Retaining screws
5. Plate

1. Rubber sleeves
2. Clamp
HYDRAULIC BELT STRETCHER

Disassembly
a. Lock the hydraulic belt stretcher ① in a vice and, proceeding as illustrated in the figure, extract the pin (tool A.2.0363) to relieve the internal spring ②.

b. Unscrew socket head screws ① and disassemble the belt stretcher plate ②.

c. Disassemble the belt-stretcher pulley as follows:
 - unscrew screw ① and remove spacer below;
 - retrieve seal ring ② from the pulley pin;
 - withdraw pulley ③ and retrieve the inner seal ring.

 slacken and unscrew the screws, remove cover ① and, simultaneously retrieve spring ② and the cover gasket.

d. Disassemble the piston in the following manner:
 - remove snap ring ① and slide washer ② from the rod of the piston;
 - then extract rubber ③ and bellows ④.
ENGINE MAIN MECHANICAL UNIT

extract piston (1) from the belt stretcher housing and retrieve seal ring (2). Then remove ring (3) from the lower part of the belt stretcher housing.

- Also inspect spring «A», which acts on the piston and spring «B» which determines the pre-loading of the hydraulic belt stretcher. Then check that the setting corresponds to that given in the table.

<table>
<thead>
<tr>
<th>Belt stretcher spring</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of useful coils</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Length of free spring</td>
<td>93 mm (3.66 in)</td>
<td>45.5 mm (1.79 in)</td>
</tr>
<tr>
<td>Static test load</td>
<td>93.16 N (20.9 lb)</td>
<td>98 N (22 lb)</td>
</tr>
<tr>
<td>Length of spring under load</td>
<td>48 mm (1.89 in)</td>
<td>30 mm (1.18 in)</td>
</tr>
</tbody>
</table>

1. Seal ring
2. Belt stretcher housing
3. Piston
4. Seal ring

b. Position spring (1) on the piston and gasket (2) on the belt stretcher housing. Then, compressing the spring close cover (3) and fix it with the relative Allen screws (4).

Checks
Subject the disassembled parts to a thorough visual examination in order to ascertain if there are signs of excessive wear; in the same way check the pin of the belt stretcher pulley for excessive wear.

CAUTION:
It is advisable to replace all the rings each time the belt stretcher is overhauled.

Reassembly
a. Insert seal ring (1), suitably lubricated with engine oil and place it in the lower bushing of the belt stretcher housing (2). Insert piston (3) complete with seal ring (4), suitably lubricated with engine oil.

1. Spring
2. Gasket
3. Cover
4. Retaining screws
c. Reinstall bellows (1) on the piston rod, taking care to fit it on the lower bushing of the belt stretcher housing, and then install rubber (2), washer (3) and safety snap ring (4).

e. Re-fit the spacer and screw in screw (1) securing the pulley. Then tighten the screw to the prescribed torque.

g. When reassembly is complete lock the belt stretcher plate in spring compressed position using the pin (tool A.2.0363).

Reinstallation on the cylinder block

To reinstall the hydraulic belt stretcher proceed as follows:

a. Mount plate (1) restraining the spring placing it over the belt stretcher support pin.

b. Position rubber seals (2) and (3) on the belt stretcher support pin.

Torque setting

Screw securing belt stretcher pulley to the support pin
17 to 20 N·m
(1.7 to 2 kg·m
12.30 to 14.47 ft·lb)

f. Fit the belt stretcher plate (1) and, after having positioned it correctly re-tighten the two Allen screws (2).

1. Pulley retaining screw

1. Belt stretcher plate
2. Retaining screws

December 1985

01-88/84

PA346980000002
c. Check that belt stretcher ① is locked by the pin (tool A.2.0363) and then mount it on the support pin complete with pre-loading spring ② and reaction spring ③.

DISTRIBUTOR

a. After lubricating it with engine oil, insert gear ①. This engages the oil pump spindle and drives the pump and the distributor.

1. Hydraulic belt stretcher
2. Pre-loading spring
3. Reaction spring

b. Fit the distributor ① with a new seal ring ②. Position rotating brush ③ towards the cylinder no. 1, and thus with the notch on the distributor housing. Mount plate ④ and secure the distributor with nut and washer ⑤; do not tighten nut ⑤ at this time.

1. Distributor
2. Seal ring
3. Rotating brush
4. Plate
5. Nut and washer

INSTALLATION OF TIMING BELT AND CHECK OF ENGINE TIMING

b. Turn the crankshaft in the normal direction until piston of cylinder no. 1 reaches T.D.C. position during the compression stroke (with both valves closed); this condition is indicated by the static period between the clockwise and anti-clockwise oscillations of the dial indicator pointer.

c. Check that in this position the following conditions occur:
 - notch «P» on the engine pulley ① must be aligned with reference pin ② on the cylinder block;
 - notches ③ and ④ on the camshaft must be aligned with the corresponding reference notches on the relative caps.
rotating brush 5 of the distributor must be facing towards cylinder no. 1 and aligned with the reference notch on the distributor housing.

CAUTION:
During all the belt re-fitting operations check that there is still alignment.

d. Fit the timing belt 6 on the pulleys, maintaining the driving legs taught and respecting the following assembly order:
 A. Crankshaft toothed pulley;
 B. Left cylinder head toothed pulley;
 C. Right cylinder head toothed pulley;
 D. Camshaft and oil pump drive pulley;
 E. Hydraulic belt stretcher pulley.

e. Slacken the nuts securing the hydraulic belt stretcher and seat the timing belt by means of the device fixed to the flywheel and turning the crankshaft in the normal rotation direction for two or three complete turns, taking care to maintain the drive legs of the toothed belt taught.
f. Keep the belt taught, press the pulley of the belt stretcher against the belt itself and lock the belt stretcher with the two screws.
g. Raise the belt stretcher arm slightly, remove pin A.2.0363 and release the arm.
h. Bring the piston of cylinder no. 1 to T.D.C. once more and check that all the alignment and timing conditions listed in steps b. and c. are fulfilled.
i. If the notches on the camshafts and relative caps are not aligned proceed with the timing procedure as described in the WORKSHOP MANUAL Alfa 90 or Alfa 75 — ENGINE MAINTENANCE - in the paragraph entitled «Checking the Timing and Drive Belt Tension».
ENGINE MAIN MECHANICAL UNIT

CYLINDER HEAD COVERS
a. Mount gaskets 1 on the spark plug holes.
b. Fill the wells of the camshaft bearings after checking that they are perfectly dry. Use the prescribed engine oil.

c. Clean the support face of the cylinder head covers to remove any fragments of gasket remaining. Use butyl acetate or methyl ethyl ketone.

CAUTION:
Before mounting the head covers spread the prescribed cement (DIRING Heildite) over the gaskets (only surfaces in contact with the head).

1. Reaction spring
2. Hydraulic belt stretcher
3. Plate

OIL SUMP
a. Rotate the engine assembly by unlocking the overhaul stand and fit the oil filter 1 using a suitable spanner.
b. Apply the prescribed cement (DIRING Heildite P/N 3522-00015) uniformly over the gasket.
c. Before applying the cement eliminate any trace of the old cement by de-greasing the surface.
d. Fit the oil sump 2 complete with gasket 3 and tighten with lag screws 4 and through screws 5. Screw the oil discharge plug 6 to the oil sump.
e. Free the engine assembly from the overhaul stand and turn the assembly over again.

1. Spark plug hole gaskets

1. Oil filter
2. Oil sump
3. Gasket
4. Lag screws
5. Through screws
6. Oil discharge plug

1. Cylinder head covers
2. Gaskets
ENGINE MAIN MECHANICAL UNIT

TIMING BELT GUARD

a. Place plastic guards covering the timing belt in position and fix them to the cylinder block and cylinder heads with screws.

b. Connect guards with bolt.

CAUTION:
To check that the engine timing is correct, with engine installed, ensure that the notches on the hubs of toothed pulleys and 2 are aligned with the respective tabs 3 and 4 on the belt guards.

GENERATOR

a. Fit generator complete with regulation bracket on support of the oil sump, insert screw and secure without tightening the respective nut.
b. Turn without tightening screw and bolt.

c. Move the generator toward the cylinder block and slide the V-belt onto the crankshaft and water pump pulleys.

d. Move generator outwards, levering it as shown in the figure, until the correct tension of the V-belt is obtained.

1. Guard
 2. Retaining screws

1. Right toothed pulley hub
 2. Left toothed pulley hub
 3. Right guard tab
 4. Left guard tab

1. Connecting bolt
 2. Right guard
 3. Left guard

1. Generator
 2. Regulation bracket
 3. Generator support
 4. Screw and nut
 5. Screw
 6. Bolt

December 1985

01-88/88
PA3469B0000002
The tension of the belt is correct if, when subjected to a load of about

147 to 294 N
(15 to 30 kg; 33 to 66 lb)

at the centre point, the belt deflection is:

12 to 16 mm (0.47 to 0.63 in)

e. Secure the generator tightening in sequence: bolt 3, bolt 4 and screw 5.

The tension is correct if, when subjected to a load of about

147 to 294 N
(15 to 30 kg; 33 to 66 lb)

at the centre point, the belt deflection is:

11 to 13 mm (0.43 to 0.51 in)

d. Tighten the adjustment screws 2, screw 1 fixing the support bracket 6 and the bolt fixing the rear bracket 3.

The tension is correct when a load of about

196 to 343 N
(20 to 35 kg; 44 to 77 lb)
at the centre of the belt causes a belt deflection of about

12 to 14 mm (0.47 to 0.55 in)

e. Fully tighten nut 2 securing the belt stretcher pulley 3.

POWER STEERING PUMP

a. Place the pump, complete with support bracket, on the cylinder block without locking screw 1, adjustment screws 2 and the locking bolt of the rear bracket 3.
b. Move the power steering pump 4 towards the cylinder block and slide the V-belt 5 onto the crankshaft pulley and onto that of the power steering pump.
c. Move the power steering pump outwards until the correct tension of the belt is obtained.

CONDITIONER COMPRESSOR

a. Place the compressor of the air conditioner 1 complete with its support bracket, on the flange of the oil sump and secure it with the two screws.
b. Slacken nut 2 securing belt stretcher pulley 3.
c. Slide the V-belt 4 onto the crankshaft pulley, onto the belt stretcher pulley and onto the compressor pulley.
d. Lower the belt stretcher pulley 3 until the correct belt tension is obtained.
INSTALLATION OF FUEL SYSTEM COMPONENTS

a. To reinstall the components of the fuel system proceed in the opposite order to that described for removal and follow these instructions.

b. For Alfa 90, Alfa 75 and GTV 6 vehicles with L-Jetronic fuel supply.
 For further checks and/or final adjustments refer to GROUP 04 - FUEL SYSTEM - L-Jetronic Fuel Supply.

c. For Alfa 90 - 2.0 vehicle with CEM fuel supply system.
 For further checks and/or final adjustments refer to GROUP 04 - FUEL SYSTEM - CEM Fuel Supply.

FINAL OPERATIONS

a. Remove the tool previously fixed to the flywheel so that the flywheel rotates freely.

b. Fit right exhaust manifolds 1 with relative gaskets to the cylinder head and lock them with nuts and washers 2 and screws 3.

c. Proceed in the same way for the exhaust manifolds to be mounted from the left side of the engine.

d. Fit the rear cover 4 to the rear flange of the cylinder block and lock it with screws 5.

e. Position the spacer and starting motor 6 on the rear cover, screw on nuts with washers 7 and tighten.

f. Install the heat shield 8 protecting the starting motor and fix it with screws 9.

g. Hook a suitable hoist to the lifting brackets and, maintaining a slight tension, slacken bolts 1 connecting brackets 2 and 3 fixed to the overhaul stand.

1. Exhaust manifolds
2. Nuts and washers
3. Screws
4. Rear cover
5. Screws

6. Starting motor
7. Nuts and washers
8. Heat shield
9. Screws
h. Replace the brackets fixed to the cylinder block with right and left engine supports 1, lock nuts and washers 2 on the cylinder block studs.

- **REPLACING THE REAR COVER SILENTBLOC**

To replace the silentbloc of the rear cover proceed as follows:

a. Provide a suitable base 1 for the extraction of the Silentbloc and position it as illustrated in the figure.

b. Using a suitable punch 2 extract the Silentbloc.

c. Fit the new Silentbloc using the same equipment.

1. Engine supports
2. Nuts and washers

i. Install the engine group in the vehicle following the procedure described in the paragraph "ENGINE REMOVAL AND INSTALLATION" for the vehicle in question.

CAUTION:

The Silentbloc 1 must be placed parallel to the side of the bevel in the seat on the rear cover as shown in the figure.

1. Silentbloc
DESCRIPTION
The engine lubrication system is of the forced flow type with replaceable filter element. The oil circulation is provided by a rotating lobe pump which is operated by the toothed timing belt through a toothed pulley and an auxiliary shaft. The oil pump is installed in the lower part of the cylinder block. The oil pressure is regulated by a maximum pressure valve in the pump housing. The oil is filtered, with total passage, during suction by means of a screen fitted on the oil feed housing of the pump and then by a cartridge filter (total flow) on the delivery pipe. The filter cartridge is provided with a bypass valve permitting the normal circulation of the oil even if the cartridge is completely clogged. The oil filler is located on the cover of the left cylinder head. The right cylinder head cover is provided with fittings for the re-circulation of the oil vapour at idling and high speed. Insufficient oil pressure is signalled on the instrument panel by means of an indicator light connected to a pressure sender on the main channel of the cylinder block.

CHECKING THE OIL PRESSURE
a. Start the engine and let the engine oil heat up to normal running temperature (90°C; 194°F). Then stop the engine.

<table>
<thead>
<tr>
<th>Engine speed (rpm)</th>
<th>Engine oil pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 to 900</td>
<td>49.03 to 147.01</td>
</tr>
<tr>
<td></td>
<td>kPa</td>
</tr>
<tr>
<td></td>
<td>bar</td>
</tr>
<tr>
<td>5500</td>
<td>343.21 to 490.3</td>
</tr>
<tr>
<td></td>
<td>kPa</td>
</tr>
<tr>
<td></td>
<td>kg/cm²</td>
</tr>
<tr>
<td></td>
<td>psi</td>
</tr>
</tbody>
</table>

b. Remove the oil pressure sender.
c. Apply a pressure gauge to the sender hole.
d. Start the engine and read the oil pressure indicated on the pressure gauge.
e. Remove the pressure gauge and re-fit the sender.
f. If the oil pressure is not within the limits indicated in the table check the oil pump.
d. Release the bonnet, support it and reconnect bolts securing hinges on both sides of the vehicle.

e. Alfa 90: if previously disconnected, restore connections of engine compartment lamp ground and power supply cables, then connect battery terminals.

f. Alfa 90: refit windscreen wipers.
ENGINE MAIN MECHANICAL UNIT

CRANKSHAFT, CRANKCASE, CONNECTING RODS, BEARINGS AND FLYWHEEL

Crankshaft

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Main journal diameter (a)</td>
<td>59.961 to 59.971 (2.3607 to 2.3610)</td>
</tr>
<tr>
<td></td>
<td>59.961 to 59.971 (2.3607 to 2.3610)</td>
</tr>
<tr>
<td>Crankpin (b)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>51.990 to 52.000 (2.0468 to 2.0472)</td>
</tr>
<tr>
<td>Lenght of rear main journal (c)</td>
<td>31.300 to 31.335 (1.2323 to 1.2336)</td>
</tr>
</tbody>
</table>

Maximum permissible ovality for main journals and crankpins
0.004 (0.0002)

Maximum permissible taper for main journals and crankpins
0.01 (0.0004)

Maximum variation in parallelism between main and crankpins
0.015 (0.0006)

Maximum eccentricity between main journals
0.04 (0.002)

(1) Oversize crankshaft

Crankcase

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Main bearing support bore diameter (e)</td>
<td>63.657 to 63.676 (2.5062 to 2.5069)</td>
</tr>
<tr>
<td>Length of rear main bearing support shoulder (f)</td>
<td>26.45 to 26.50 (1.041 to 1.043)</td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

Connecting rod

![Connecting rod diagram]

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Big end bore diameter (h)</td>
<td>(062.10)</td>
</tr>
<tr>
<td>Small end bush hole diameter (n)</td>
<td>55.511 to 55.524 (2.1854 to 2.1860)</td>
</tr>
</tbody>
</table>

Main bearings

![Main bearings diagram]

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Thickness of main bearing (l)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Green</td>
</tr>
</tbody>
</table>

(1) Only to be used on standard (non-oversized) crankshafts if the radial mating clearance between pin and half-bearings is greater than 0.050 mm (0.0020 in) (after checking the dimensions of each single bearing)

Big end bearings

![Big end bearings diagram]

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Thickness of big end bearing (l)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
</tr>
</tbody>
</table>
Thrust rings

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Thickness of thrust ring</td>
<td>(m)</td>
</tr>
</tbody>
</table>

Flywheel

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protrusion of flywheel center bushing from rear surface of</td>
<td>2000</td>
</tr>
<tr>
<td>crankshaft</td>
<td>(062.10)</td>
</tr>
<tr>
<td>I.D. of flywheel centre bushing (reamed)</td>
<td>(n)</td>
</tr>
<tr>
<td>I.D. of flywheel centre bushing (reamed)</td>
<td>(o)</td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

CAMSHAFT, ROCKERS, BOWLS, SPRINGS, VALVES AND CYLINDER HEAD

Camshaft

![Camshaft diagram]

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Camshaft journal seat diameter</td>
<td>(a)</td>
</tr>
<tr>
<td>Camshaft journal diameter</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Rockers

![Rocker diagram]

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Rocker shaft diameter</td>
<td>(c)</td>
</tr>
<tr>
<td>Rocker shaft bore diameter</td>
<td>(d)</td>
</tr>
</tbody>
</table>

Bowls

![Bowl diagram]

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Valve Bowl diameter</td>
<td>(g)</td>
</tr>
<tr>
<td>Intake</td>
<td>34.973 to 34.989 (1.3769 to 1.3775)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>21.971 to 21.989 (0.8650 to 0.8657)</td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

CAMSHAFT DRIVE — OIL PUMP

![Diagram of camshaft drive and oil pump](image)

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Diameter of camshaft pulley hub bush (reamed) (a)</td>
<td>(062.10)</td>
</tr>
<tr>
<td>Diameter of camshaft pulley hub (b)</td>
<td></td>
</tr>
<tr>
<td>Diameter of bush for distributor/oil pump drive pulley hub (reamed) (1) (c)</td>
<td>32.000 to 32.025 (1.2568 to 1.2608)</td>
</tr>
<tr>
<td>Diameter of distributor/oil pump drive gear hub (reamed) (1) (d)</td>
<td>19.000 to 19.021 (0.7480 to 0.7489)</td>
</tr>
<tr>
<td>Diameter of distributor/oil pump drive gear hub (reamed) (1) (e)</td>
<td>19.000 to 19.021 (0.7480 to 0.7489)</td>
</tr>
<tr>
<td>Diameter of distributor/oil pump drive gear hub (1) (f)</td>
<td>49.325 to 49.375 (1.9419 to 1.9439)</td>
</tr>
<tr>
<td>Diameter of outer rotor seat in oil pump housing (g)</td>
<td></td>
</tr>
<tr>
<td>Outside diameter of outer oil pump rotor (h)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Only on RH cylinder head
ASSEMBLY INTERFERENCE FITS AND CLEARANCES

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(062.10)</td>
</tr>
<tr>
<td>Piston clearance in cylinder</td>
<td>0.030 to 0.049 (0.0012 to 0.0019)</td>
</tr>
<tr>
<td>Compression rings end float in groove</td>
<td></td>
</tr>
<tr>
<td>Compression ring no. 1</td>
<td>0.035 to 0.067 (0.0014 to 0.0026)</td>
</tr>
<tr>
<td>Compression ring no. 2</td>
<td>0.035 to 0.067 (0.0014 to 0.0026)</td>
</tr>
<tr>
<td>Oil scraper ring</td>
<td>0.025 to 0.057 (0.0010 to 0.0022)</td>
</tr>
<tr>
<td>Gudgeon pin clearance in piston</td>
<td>0.003 to 0.008 (0.0002 to 0.0003)</td>
</tr>
<tr>
<td>Gudgeon pin clearance in small end bush</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.008 to 0.021 (0.0003 to 0.0008)</td>
</tr>
<tr>
<td>White</td>
<td>0.005 to 0.018 (0.0002 to 0.0007)</td>
</tr>
<tr>
<td>Running clearance between main bearings and main journals</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>0.016 to 0.057 (0.0006 to 0.0022)</td>
</tr>
<tr>
<td>Blue</td>
<td>0.014 to 0.055 (0.0006 to 0.0022)</td>
</tr>
<tr>
<td>Running clearance between big end bearings and crankpins</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>0.021 to 0.060 (0.0008 to 0.0024)</td>
</tr>
<tr>
<td>Blue</td>
<td>0.023 to 0.062 (0.0009 to 0.0024)</td>
</tr>
<tr>
<td>Crankshaft end-float</td>
<td>0.080 to 0.265 (0.0031 to 0.0104)</td>
</tr>
<tr>
<td>Big end-float</td>
<td>0.2 to 0.3 (0.008 to 0.012)</td>
</tr>
<tr>
<td>Running clearance between journal and camshaft seat</td>
<td>0.030 to 0.064 (0.0012 to 0.0033)</td>
</tr>
<tr>
<td>Camshaft end-float</td>
<td>0.065 to 0.200 (0.0026 to 0.0079)</td>
</tr>
<tr>
<td>Running clearance between rockers and rocker shaft</td>
<td>0.016 to 0.046 (0.0006 to 0.0018)</td>
</tr>
<tr>
<td>Running clearance between valve bowl and seat</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.011 to 0.052 (0.0004 to 0.0020)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.011 to 0.050 (0.0004 to 0.0020)</td>
</tr>
<tr>
<td>Valve stem running clearance in valve guide</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.013 to 0.043 (0.0005 to 0.0017)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.040 to 0.080 (0.0016 to 0.0031)</td>
</tr>
<tr>
<td>Interference fit of valve guide in cylinder head</td>
<td>0.015 to 0.054 (0.0006 to 0.0021)</td>
</tr>
<tr>
<td>Interference fit of valve seat in cylinder head</td>
<td>0.040 to 0.100 (0.0016 to 0.0039)</td>
</tr>
<tr>
<td>Clearance between inner and outer oil pump rotors (1)</td>
<td>0.040 to 0.290 (0.0016 to 0.0114)</td>
</tr>
</tbody>
</table>

(Continued)
ENGINE MAIN MECHANICAL UNIT

Unit: mm (in)

<table>
<thead>
<tr>
<th>Check dimensions</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
</tr>
<tr>
<td>Rotor end-float in oil pump body (1)</td>
<td>0.025 to 0.075 (0.0010 to 0.0030)</td>
</tr>
<tr>
<td>Running clearance between outer rotor and oil pump body</td>
<td>0.170 to 0.275 (0.0067 to 0.0108)</td>
</tr>
<tr>
<td>Running clearance between bush and camshaft pulley hub</td>
<td>0.025 to 0.066 (0.0010 to 0.0026)</td>
</tr>
<tr>
<td>Running clearance between bush and distributor/oil</td>
<td>0.020 to 0.054 (0.0008 to 0.0021)</td>
</tr>
<tr>
<td>pump pulley hub (2)</td>
<td></td>
</tr>
<tr>
<td>Running clearance between bush and distributor/oil</td>
<td></td>
</tr>
<tr>
<td>pump drive gear hub (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Measure with the rotors in the position illustrated</td>
<td></td>
</tr>
<tr>
<td>(2) Only on RH cylinder head</td>
<td></td>
</tr>
<tr>
<td>(3) Only on oversize crankshaft</td>
<td></td>
</tr>
</tbody>
</table>

HEATING TEMPERATURES

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder head temperature for fitting valve seats</td>
<td>120°C (248°F)</td>
</tr>
<tr>
<td>Starter ring gear temperature for shrinking onto flywheel</td>
<td>120° to 140°C (248 to 284°F)</td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

GENERAL REQUIREMENTS

FLUIDS AND LUBRICANTS

<table>
<thead>
<tr>
<th>Application</th>
<th>Type</th>
<th>Name</th>
<th>Q.ty [kg (lb)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasket for rear main bearing cap</td>
<td>FLUID</td>
<td>UNION CARBIDE CHEMICALS CO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ucon Lubricant 50 HB-5100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MILLOIL: Lubricant for rubber sections</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part No. 4500-17502</td>
<td></td>
</tr>
<tr>
<td>Crankshaft oil seals</td>
<td>OIL</td>
<td>AGIP SINT 2000 10W50</td>
<td></td>
</tr>
<tr>
<td>Front: outer surface</td>
<td></td>
<td>IP Sint 10W40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part No. 3631-693/52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISECO Molykote BR2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part No. 3671-69841</td>
<td></td>
</tr>
<tr>
<td>Lip</td>
<td>GREASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear: outer surface</td>
<td></td>
<td>IP Sint 10W40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part No. 3631-693/52</td>
<td></td>
</tr>
<tr>
<td>Cylinder head supportumps (1)</td>
<td>OIL</td>
<td>AGIP Sint 2000 10W50</td>
<td>0.450 (0.99)</td>
</tr>
<tr>
<td>Engine oil sump</td>
<td></td>
<td>IP Sint 10W40</td>
<td>6.0 (13.23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part No. 361-639/52</td>
<td></td>
</tr>
<tr>
<td>The quantity indicated includes the following capacities:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Sump at max. level</td>
<td></td>
<td></td>
<td>5.5 (12.13)</td>
</tr>
<tr>
<td>— Filter</td>
<td></td>
<td></td>
<td>0.5 (1.10)</td>
</tr>
<tr>
<td>and corresponds to periodic replacements during maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Difference between min and max level on dipstick</td>
<td></td>
<td></td>
<td>2.0 (4.41)</td>
</tr>
<tr>
<td>Camshaft oil seals</td>
<td>OIL</td>
<td>AGIP Sint 2000 10W40</td>
<td></td>
</tr>
<tr>
<td>Sealing ring for distributor/oil pump drive pulley shaft</td>
<td></td>
<td>IP Sint 10W40</td>
<td></td>
</tr>
<tr>
<td>— Outer surface</td>
<td></td>
<td>Part No. 3631-693/52</td>
<td></td>
</tr>
<tr>
<td>— Lip</td>
<td>GREASE</td>
<td>ISECO Molykote BR2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part No. 3671-69841</td>
<td></td>
</tr>
<tr>
<td>Pin for hydraulic tensioner</td>
<td>GREASE</td>
<td>ISECO Molykote paste G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part No. 3671-69840</td>
<td></td>
</tr>
</tbody>
</table>

(1) Refill only if disassembled (cylinder head dry)
TROUBLE DIAGNOSIS AND CORRECTIONS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probable cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noisy engine knocking of crankshaft</td>
<td>Excessive crankshaft running clearance on bearings and/or end play on semi-thrust rings</td>
<td>Replace bearings and/or semi-thrust rings</td>
</tr>
<tr>
<td>Piston and connecting rod knocking</td>
<td>• Fit incorrect</td>
<td>Adjust</td>
</tr>
<tr>
<td></td>
<td>• Pin end float</td>
<td>Adjust</td>
</tr>
<tr>
<td>Camshaft and valves knocking (intake side)</td>
<td>• Excessive valve clearance</td>
<td>Adjust</td>
</tr>
<tr>
<td></td>
<td>• Valve bowls incorrect fit</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>• Valve spring broken</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>• Camshafts worn</td>
<td>Replace</td>
</tr>
<tr>
<td>Water pump noisy</td>
<td>Rotor shaft excessive backlash</td>
<td>Replace water pump</td>
</tr>
<tr>
<td>Other mechanical troubles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve seat seized</td>
<td>• Improper valve clearance</td>
<td>Replace and adjust</td>
</tr>
<tr>
<td></td>
<td>• Valve spring broken</td>
<td>Replace</td>
</tr>
<tr>
<td>Cylinders and pistons excessively worn</td>
<td>• Fit surfaces defective</td>
<td>Restore correct installation</td>
</tr>
<tr>
<td></td>
<td>• Poor oil quality</td>
<td>User proper oil</td>
</tr>
<tr>
<td></td>
<td>• Air cleaner dirty or inefficient</td>
<td>Replace filter</td>
</tr>
<tr>
<td>Big end bearings faulty</td>
<td>• Shortage of engine oil</td>
<td>Check lubrication system</td>
</tr>
<tr>
<td></td>
<td>• Poor engine oil quality</td>
<td>Use proper oil</td>
</tr>
<tr>
<td></td>
<td>• Crank pins worn or out-of-round</td>
<td>Grind or replace</td>
</tr>
<tr>
<td></td>
<td>• Big end bearing - crankpin coupling incorrect</td>
<td>Replace</td>
</tr>
</tbody>
</table>
ENGINE MAIN MECHANICAL UNIT

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probable cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main bearings faulty</td>
<td>• Shortage of engine oil</td>
<td>Check lubrication system</td>
</tr>
<tr>
<td></td>
<td>• Poor engine oil quality</td>
<td>Use proper oil</td>
</tr>
<tr>
<td></td>
<td>• Main journal worn or out-of-round</td>
<td>Grind or replace</td>
</tr>
<tr>
<td></td>
<td>• Main bearings main journal coupling incorrect</td>
<td>Replace</td>
</tr>
</tbody>
</table>

Lubrication

<table>
<thead>
<tr>
<th></th>
<th>Probable cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil leakage</td>
<td>• Oil sump drain plug loosened</td>
<td>Tighten</td>
</tr>
<tr>
<td></td>
<td>• Oil leakage from sump gasket</td>
<td>Replace gasket</td>
</tr>
<tr>
<td></td>
<td>• Oil leakage from camshaft seal rings</td>
<td>Replace seal rings</td>
</tr>
<tr>
<td></td>
<td>• Oil leakage from engine gaskets and seal rings</td>
<td>Replace seal rings and worn gaskets</td>
</tr>
<tr>
<td></td>
<td>• Oil leakage from oil filter gasket</td>
<td>Tighten filter</td>
</tr>
<tr>
<td>Pressure decreases</td>
<td>• Pressure regulating valve dirty</td>
<td>Clean</td>
</tr>
<tr>
<td></td>
<td>• Poor engine oil quality</td>
<td>Replace</td>
</tr>
</tbody>
</table>

December 1985

01-106
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.0075</td>
<td>Vehicle lift support</td>
<td>01-88/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01-88/13</td>
</tr>
<tr>
<td>A.2.0117</td>
<td>Cylinder liner retainer (4 pieces - to be used with tool A.2.0362)</td>
<td>01-88/32</td>
</tr>
<tr>
<td>A.2.0145</td>
<td>Flywheel retainer (for overhaul on bench)</td>
<td>01-88/33</td>
</tr>
<tr>
<td>A.2.0192</td>
<td>Valve support (to be used with tools A.2.0359 and A.3.0522)</td>
<td>01-88/41</td>
</tr>
<tr>
<td>A.2.0195</td>
<td>Cylinder head support (to be used with tool A.2.0360)</td>
<td>01-88/38</td>
</tr>
<tr>
<td>A.2.0359</td>
<td>Special nut for valve supporting tool (to be used with tools A.2.0192 and A.3.0522)</td>
<td>01-88/41</td>
</tr>
<tr>
<td>A.2.0360</td>
<td>Yoke for cylinder head support (to be used with tool A.2.0195)</td>
<td>01-88/38</td>
</tr>
<tr>
<td>Reference number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>A.2.0361</td>
<td>Tool for rotating camshaft and auxiliary control pulleys</td>
<td>01-88/39</td>
</tr>
<tr>
<td>A.2.0362</td>
<td>Washer for stopping cylinder liners (4 pieces are necessary - to be used with tool A.2.0117)</td>
<td>01-88/32</td>
</tr>
<tr>
<td>A.2.0363</td>
<td>Stop pin for hydraulic belt stretcher device</td>
<td>01-88/27</td>
</tr>
<tr>
<td>A.2.0369</td>
<td>Tool for caulking crankshaft oil passage plugs</td>
<td>01-88/62</td>
</tr>
<tr>
<td>A.3.0134</td>
<td>Valve guide remover</td>
<td>01-88/50</td>
</tr>
<tr>
<td>A.3.0139/0001</td>
<td>Rear main bearing cap remover lever (to be used with tool A.3.0139/0002)</td>
<td>01-88/36</td>
</tr>
<tr>
<td>A.3.0139/0002</td>
<td>Rear main bearing cap puller (to be used with tool A.3.0139/0001)</td>
<td>01-88/36</td>
</tr>
<tr>
<td>Reference number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>A.3.0178</td>
<td>Rear crankshaft seal installer</td>
<td>01-88/73</td>
</tr>
<tr>
<td>A.3.0210</td>
<td>Extractor (expandable pincers) for crankshaft rear bearing</td>
<td>01-88/35</td>
</tr>
<tr>
<td>A.3.0244</td>
<td>Valve guide seal driver</td>
<td>01-88/55</td>
</tr>
<tr>
<td>A.3.0247</td>
<td>Valve guide seal remover</td>
<td>01-88/43</td>
</tr>
<tr>
<td>A.3.0305</td>
<td>Flywheel bushing driver</td>
<td>01-88/73</td>
</tr>
<tr>
<td>A.3.0324</td>
<td>Valve spring compressor lever (to be used with tools A.3.0520, A.2.0192, A.2.0359 and A.3.0522)</td>
<td>01-88/41</td>
</tr>
<tr>
<td>Reference number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>A.3.0520</td>
<td>Yoke for assembling and disassembling valve (to be used with tools A.2.0192, A.3.0324, A.3.0522 and A.2.0359)</td>
<td>01-88/41</td>
</tr>
<tr>
<td>A.3.0521</td>
<td>Puller of camshaft pulley</td>
<td>01-88/39</td>
</tr>
<tr>
<td>A.3.0522</td>
<td>Loop for assembly and disassembly of valves (to be used with tools A.3.0324, A.2.0359, A.2.0192 and A.3.0520)</td>
<td>01-88/41</td>
</tr>
<tr>
<td>A.3.0524</td>
<td>Driver of crankshaft front oil seal</td>
<td>01-88/76</td>
</tr>
<tr>
<td>A.3.0525</td>
<td>Driver of front oil seal on camshafts and auxiliary controls</td>
<td>01-88/59</td>
</tr>
<tr>
<td>A.3.0526</td>
<td>Intake valve guide driver</td>
<td>01-88/51</td>
</tr>
<tr>
<td>A.3.0527</td>
<td>Exhaust valve guide driver</td>
<td>01-88/51</td>
</tr>
<tr>
<td>Reference number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>A.3.0528</td>
<td>Puller-driver of oil pump shaft, camshaft bushings and ignition distributor</td>
<td>01-88/46</td>
</tr>
<tr>
<td>A.4.0195</td>
<td>Guide for reaming of the bush seats of distributor control shaft [use with dia.: 19 mm (0.75 in) reamer]</td>
<td>01-88/48</td>
</tr>
<tr>
<td>A.5.0220</td>
<td>Combined 3 mm and 11 mm wrench for adjusting exhaust side tappets</td>
<td>01-88/58</td>
</tr>
<tr>
<td>C.1.0108</td>
<td>Dial gauge for checking valve caps</td>
<td>01-88/58</td>
</tr>
<tr>
<td>C.6.0148</td>
<td>Cylinder liner/piston standout gauge</td>
<td>01-88/74</td>
</tr>
<tr>
<td>C.6.0183</td>
<td>Tool for checking T.D.C.</td>
<td>01-88/85</td>
</tr>
<tr>
<td>C.6.0197</td>
<td>Feeler gauge for checking valve clearance</td>
<td>01-88/58</td>
</tr>
<tr>
<td>Reference number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>R.9.0001</td>
<td>Container for valve clearance adjustment caps</td>
<td>01-88/58</td>
</tr>
</tbody>
</table>